
Privacy Observatory: Reproducing
Privacy Studies

Semester Project

Elisa Baux

June 17, 2024

Supervisors: Prof. Dr. David Basin, Dr. Karel Kubicek, Ahmed Bouhoula

Department of Computer Science, ETH Zürich

Abstract

This project examines the process of reproducing web privacy mea-
surement studies so that they can be deployed by an orchestration
framework.

By documenting the reproduction efforts of five selected studies, we
gain insights into the challenges of reproduction and principles that can
be followed to limit them.

i

Contents

Contents ii

1 Introduction 1
1.1 Background . 1
1.2 Selected publications . 2

2 Methodology 3
2.1 The Privacy Observatory . 3

2.1.1 Components . 3
2.1.2 Input and Output Handling 4
2.1.3 Scheduling Studies . 4

2.2 Artifacts . 5
2.3 How to Reproduce a Study . 6

2.3.1 Collection of artifact . 6
2.3.2 Implementing the Study in Docker 6
2.3.3 Deploying and Monitoring the Study 7

2.4 Studies . 7
2.4.1 DarkDialogs . 7
2.4.2 PURL . 8
2.4.3 Everybody’s Looking for SSOmething 9
2.4.4 Targeted and Troublesome 9
2.4.5 Investigating Persistent PII Leakage-Based Web Tracking 10

3 Results 12
3.1 General results . 12

3.1.1 Overview of reproduction attempts 12
3.2 Reproduced studies . 13

3.2.1 DarkDialogs . 13
3.2.2 Looking for SSOmething 13

ii

Contents

4 Discussion 15
4.1 Reproduction results . 15

4.1.1 Consistency . 15
4.1.2 Performance . 16

4.2 Categorization of issues . 16
4.2.1 Encountered issues . 16
4.2.2 Non categorized issues 17

5 Conclusion 18

Bibliography 19

A Appendix 21
A.1 Principles and reimplementation criteria 21
A.2 Results from test crawls . 21

iii

Chapter 1

Introduction

In the field of experimental computer science, the reproduction of research
findings is fundamental to establishing reliable scientific knowledge. This
principle is particularly crucial in the context of internet privacy measurement
studies, as reproducibility not only validates findings, but also enables long-
term analyses. These can reveal trends in web service practices and assess the
impact of regulatory changes, providing insights into the evolving landscape
of internet privacy.

Typically, researchers develop a web crawler to conduct such studies. As
noted by Demir et al. [1], reproducing crawling studies presents significant
challenges. Small variations in experimental setup can lead to very large
discrepancies in outcomes.

1.1 Background

In a prior MSc thesis, Kast [2] implemented an orchestration framework for
running crawls. This framework, which we refer to as the Privacy Observatory,
aims to facilitate the orchestration and post-processing of privacy measure-
ment studies in the long term. The Privacy observatory is described more in
depth in section 2.1. Kast also proposed six principles (P1-P6) to facilitate
long-term reproducibility, summarized in Table A.2

Kast’s work builds on the theoretical foundation laid by Demir et al. [1], who
explored the requirements for reproducibility in web measurement studies by
surveying 117 recent research papers to derive best practices. They specified
18 criteria necessary for ensuring good reproducibility, categorized into
several groups: dataset specification (C1 - C4), applications and programs
used for running the crawler (C10), specific crawling environment (C11 -
C14), and post-processing evaluation (C15 - C18). The criteria can be found
in Table A.1 .

1

1.2. Selected publications

In this project, we assessed five publications with regards to the criteria and
principles mentioned above. We then attempted to reproduce these studies,
documenting the process and which criteria arose in practice.

1.2 Selected publications

The studies to be reproduced were selected from highly ranked conferences
and chosen to cover a range of themes, excluding cookie-related topics, as
a study on that subject is already reproduced in the Privacy Observatory.
The selected studies are described, along with the methodology to reproduce
them, in section 2.4.

The assessment of these studies under the criteria of Demir et al. can be
found in Tables A.3 to A.4.

2

Chapter 2

Methodology

In the following sections, we describe the Privacy Observatory and its use,
give a methodology to reproduce a study with it, as well as share the main
observations from the studies selected to reproduce.

2.1 The Privacy Observatory

The Privacy Observatory is an orchestration framework designed for running
crawls to reproduce web privacy measurement studies. Implemented by
Patrice Kast in a prior MSc thesis, it manages the regular initiation of jobs,
collection of results, and their visualization. Below is an overview of its
components and usage. For more details, refer to Patrice Kast’s report [2].

2.1.1 Components

PostgreSQL Database: Stores the results of studies, including overall statis-
tics and domain-specific measurements.

RESTful API Engine: Handles the backend logic and communicates with
the database.

Front-End JavaScript WebApp: Allows users to configure new studies, mon-
itor the platform, and analyze results.

Worker: Executes the studies and reports results back to the API.

The worker executes studies defined using Docker images, with a docker-compose.yaml
file specifying the configuration and environment variables. Containeriz-
ing these studies mitigates issues with browser binaries and dependencies,
and ensures that the execution of studies is fully automated. However, this
complicates progress monitoring and manual interventions.

3

2.1. The Privacy Observatory

2.1.2 Input and Output Handling

The worker starts the study by providing it with an input through a dynam-
ically generated input.txt file or a predefined domain list, which can be
added using the Front-End JavaScript WebApp.

For each study, we must define a manager.py script to set up the envi-
ronment, perform the crawl on the websites in input.txt, and process the
results, outputting them to output.txt. The study shares the results for-
matted as JSON objects, containing both aggregated statistics (”stats”) and
individual domain measurements (”doms”), to the worker using this file.

1 {

2 "stats": {

3 "successfully_loaded ": 1.0,

4 "with_dialog ": 0.50,

5 *continue with other general statistics*

6 "OnlyOptIn ": 0,

7 *continue with statistics on results*

8 },

9 "doms": {

10 "linkedin.com": {

11 "OnlyOptIn ": 0,

12 *continue with specific results*

13 "result" :" Dialog found"

14 },

15 "wikipedia.org": {" result" :"Error: no dialog

found"}

16 }

17 }

Listing 2.1: output.txt example (DarkDialogs)

2.1.3 Scheduling Studies

Studies are scheduled using crontab-style syntax, ensuring that measure-
ments are taken consistently. The crontab command can be used to schedule
tasks to run periodically at fixed times, intervals or dates with:

X X X X X -> command to execute

| | | | |

| | | | ----- Day of week (0 - 7) (Sunday is both 0 and 7)

| | | ------- Month (1 - 12)

| | --------- Day of month (1 - 31)

| ----------- Hour (0 - 23)

------------- Minute (0 - 59)

4

2.2. Artifacts

Once a study is added, it can be monitored using the Front-End WebApp
under Runs, where users can view the status of workers and examine the
results.

2.2 Artifacts

The artifact of a publication constitutes of all resources needed to reproduce a
study. It typically consists of instructions, installation/setup scripts, required
data, the crawler itself, and post-processing scripts.

Instructions Clear and comprehensive instructions, typically in the form
of a ReadMe file, are essential for understanding and reproducing a study. A
description of the code and architecture helps in understanding expected
behavior and simplifies troubleshooting. Detailed run instructions are partic-
ularly valuable, not only to ensure consistency, but also for ease of use, as it
can be hard to distinguish between components required specifically for the
study and those inherited from previous work.

Setup For the successful setup and operation of a study (especially within a
Docker container), it is essential to specify both the installation requirements
and the environment settings. This ensures all dependencies are met. Often,
studies rely on specific versions of software,which must be clearly stated to
guarantee compatibility and functionality. Typically these specifications are
detailed in documents such as requirements.txt and environment.yaml,
or described in the ReadMe file.

Dataset The original dataset provides the specific websites on which the
initial study was conducted. Using the same dataset can help compare
consistency with original findings. While it is useful for this dataset to
include results for more precise analysis, it is not imperative as the original
results are published in the paper. Alternatively, the dataset can be replaced
with a current list of top websites, to provide a more modern context for the
findings, as we are interested in new measurements. Ruth et al. [3] have
shown that studies can often use website lists that are not representative of
the actual internet. Therefore, in some cases, an updated dataset can provide
a more relevant context for findings.

Crawler The source code of the crawler is crucial for reproduction. Many
studies use customized crawling technology, and having access to their code
prevents the errors and inefficiencies that could arise from attempting to
reverse-engineer the methodology presented.

5

Karel Kubicek
could have mentioned existing crawling tech

2.3. How to Reproduce a Study

Post-processing script Once the data from the crawl is collected, the post-
processing script processes it to produce the study’s final results. Access to
the original script ensures that the data interpretation is aligned with the one
from the original study.

2.3 How to Reproduce a Study

Since every study is implemented differently, the procedure to reproduce
them will vary. Each will require different amounts of time and focus on
certain aspects. However, every reproduction involves several key steps and
considerations which we outline below.

2.3.1 Collection of artifact

The process starts with the collection of the artifact. In case it is incomplete,
contacting the authors will be necessary to acquire the missing materials.

2.3.2 Implementing the Study in Docker

Reproducing a study for the privacy observatory implies containerizing it
with Docker, which involves specific considerations dependant on the crawler
technology specifics of the study code. Here we outline some scenarios that
are likely to occur.

When using a binary for a browser, which is recommended to enhance
reliability [2], it is important to ensure that all necessary dependencies are
installed. Unfortunately, sometimes the artifact authors do not include
dependencies, as they maintain them locally.

To address potential issues with manual time zone configuration, setting
the time zone directly in the Dockerfile (e.g., ENV TZ=timezone) is advised.
Furthermore, to avoid manual input requirements, set ’DEBIAN_FRONTEND’
to ’noninteractive’. Considerations such as GPU feature utilization and
shared memory usage are also important depending on the study’s demands.

Docker Compose Setup Below is a template for the Docker Compose file. It
is important to assign a specific tag to each image, as the Privacy Observatory
does not enforce checking for updates. Hence using the latest tag does not
guarantee that the latest version is actually being used.

1 version: "3.4"

2 services:

3 studyName:

4 image: dockerhub_username/imageName:TAG_ID

5 environment:

6

2.4. Studies

6 - environment_variables=xxx

7 volumes:

8 - /opt/input.txt:/opt/path/to/input.txt

9 - /opt/output.txt:/opt/path/to/output.txt

Listing 2.2: Docker Compose configuration

2.3.3 Deploying and Monitoring the Study

Upload the Docker image to Docker Hub—making it public if the study’s
results are to be openly shared—and add it to the Privacy Observatory using
the docker-compose.yaml file. Utilize the observatory’s scheduling tools
to run the study at desired intervals and monitor its progress through the
Front-End JavaScript WebApp.

2.4 Studies

This section outlines the reproduction of four selected web privacy mea-
surement studies for the Privacy Observatory, giving an overview of the
implementation process.

2.4.1 DarkDialogs

Kirkman et al.[4] developed a system called DarkDialogs to automatically
detect ten different design techniques in cookie consent dialogs that nudge
users towards making less privacy friendly decisions. These designs are
known as dark patterns. The system was then deployed on a sample of
10k websites, taken from the Tranco top list [5]. The work, published at the
2023 European Symposium on Security and Privacy, provides insights into
the prevalence of dark patterns and their association with various website
characteristics. We refer to this work as DarkDialogs.

This study uses Selenium’s web scraping Python library with ChromeDriver
to load and interact with websites using the Chrome browser.

To adapt this study for a Docker environment, we had to incorporate an X
server using Xvfb, as Docker does not natively support graphical displays.
This allowed us to remove the --headless argument from Chrome’s launch
options. Additionally, we removed the --no-sandbox option to prevent
websites from detecting and possibly flagging the crawler as a bot.

One of the challenges we faced was adapting the unspecified version of
Chrome to be compatible with Selenium. Moreover, we encountered an index
out of range error, which only manifested in the absence of a cookie dialog in
the crawled website. This resulted in having ”error” instead of ”no dialog” as

7

2.4. Studies

a result for the website. We resolved this issue by adding an additional check
to ensure that a dialog was actually found before updating the database.

Another issue arose with the configuration options intended to automate
the crawling process. Unexpectedly, the option to make the program fully
automated set the crawler to require manual validation during the run,
which inadvertently halted the automation, blocking the crawler’s progress.
Although the solution was straightforward once identified, diagnosing this
issue was challenging due to the lack of any indication that the system was
awaiting input.

Finally, the original study did not publish a post-processing script, requiring
us to implement this component to match the outputs of the published paper.

2.4.2 PURL

Munir et al. developed a system to detect and sanitize tracking information
embedded in decorated links on web pages. With a machine learning ap-
proach, it effectively identifies and removes tracking data from URLs, while
minimizing website breakage. The system was deployed on 20k websites
sampled from the Tranco top-million websites list and found that 73.02% of
sites abused link decoration for tracking, often by well-known advertisers
and trackers. This work, which we refer to as PURL, was published at the
2024 USENIX Security Symposium and highlights the extensive use of link
decoration for tracking and the need for precise detection methods.

PURL involves first running a web crawler that uses OpenWPM with Firefox.
Then, the data collected from the crawl is used to construct a graph repre-
sentation of webpage executions, capturing elements such as HTML DOM
nodes, script executions, network requests, and URL decorations. This graph
enables the extraction of features indicative of tracking behavior, which are
finally analyzed using a supervised machine learning classifier to distinguish
between tracking and non-tracking link decorations.

The main challenge was the lack of clear instructions for initiating the crawl,
and how the rest of the code fit together. This issue was further complicated
by compatibility problems with the provided Firefox binary.

After contacting PURL’s authors, the repository was updated and, with a few
fixes, the crawler could be run. However, the researcher encountered issues
integrating OpenWPM results into the PURL pipeline and hasn’t had time to
resolve these problems or finish updating the README. As a result, we are
still awaiting his response to complete this reproduction.

8

Karel Kubicek

2.4. Studies

2.4.3 Everybody’s Looking for SSOmething

Dimova et al. [6] developed a system to evaluate the privacy implications of
OAuth-based Single Sign-On (SSO) on the web. This study, which we refer
to as Looking for SSOmething was published in the Proceedings on Privacy
Enhancing Technologies in 2023. They deployed a large-scale analysis of
100k websites from the Chrome User Experience Report [7] and reveal that
18.53% of websites using OAuth request non-minimal scopes, i.e., more user
data than necessary. This work highlights how websites often request more
personal information than required, raising privacy concerns.

This study involves a three-step crawling process to collect data across the
web. At first, the crawler searches for login buttons on the homepage of
each website. Then it clicks on each potential login button and collects
OAuth buttons on the subsequent login pages. Finally, the crawler clicks on
each OAuth button and extracts the scope parameter from the authorization
request.

The crawling steps are performed using PyChromeDriver, instrumented
headlessly via the Chrome DevTools Protocol. We faced challenges running
the study in a sandboxed environment, ultimately using the --no-sandbox

flag to resolve the issues. As mentioned earlier, this is not an optimal solution,
as it causes browser fingerprinting that is used in bot detection. Additionally,
the provided code was missing specific requirements and version details.

To manage the multi-step process of this study, the researchers used their
laboratory’s platform ”dnetcrawl”, which orchestrates and executes large-
scale web crawls. Since this platform is restricted to their laboratory, we
had to manually implement the communication between the scripts, saving
the results of each step and reformatting them for the next. As our imple-
mentation does not include parallelization, the reproduction of this study is
significantly slower than the original, which ran on ten virtual machines.

The shared scripts would get indefinitely stuck if a page did not load, so we
integrated a timeout mechanism to ensure progression. At first we tried a
retry mechanism, but it was ineffective and thus removed.

The post-processing script was initially not shared and was only obtained
after communication with the researchers. Due to their busy schedules, the
script was not cleaned up and was designed for use with remote MongoDB
[8]. We modified it to work with local SQLite3 [9] so that it was compatible
with our setup.

2.4.4 Targeted and Troublesome

Moti et al. [10] conducted an analysis of tracking and advertising practices
on children’s websites. Their study involved a large-scale crawl of 2,000 child-

9

2.4. Studies

directed websites which they compiled using an ML classifier, identifying
the presence of trackers, fingerprinting scripts, and targeted advertisements.
They found that around 90% of child-directed websites embed one or more
trackers, and about 27% contain targeted advertisements. This research,
presented at the 2024 IEEE Security and Privacy, reveals the widespread
occurrence of privacy violations and inappropriate ad content on websites
aimed at children. We refer to this work as Targeted and Troublesome.

The implementation of this study involves multiple parts. At first, researchers
compiled a list of 2K child-directed websites by training a text based classifier
to detect children’s website using HTML metadata fields.

Next, they extended the Tracker Radar Collector (TRC) [11], a Puppeteer-
based [12] web crawler, to go through the compiled list of child-directed
websites.

The study analysed three sets of results: the extent to which ads appearing
on children’s websites are targeted; an analysis of adverts from categories
regarded as problematic for children; and the prevalence of online tracking,
examining trackers, cookies, and the use of browser fingerprinting techniques.

Given our focus on privacy and the complexity involved in analyzing prob-
lematic ad content, we decided to concentrate on reproducing the results
related to ad targeting and online tracking. This decision excludes the ex-
ploratory analysis of problematic ad content, thereby reproducing about
two-thirds of the original study’s results.

The shared code provides scripts for reproducing the crawls on the generated
children’s website lists, making it straightforward to reproduce that part.
Although the unit tests from the TRC code did not pass, they were useful
for debugging purposes. The changes necessary involved adapting the node
version and fixing package dependency errors.

Contacting the authors was necessary to receive the post-processing code to
gain insights into the data. The authors are still working on providing this
code, so the reproduction of this study is not yet finished.

2.4.5 Investigating Persistent PII Leakage-Based Web Tracking

Dao et al. [13] developed a system to investigate persistent personally identi-
fiable information (PII) leakage-based web tracking. Their study, which we
refer to as Persistent PII, analyzes how PII is leaked during the authentica-
tion flows of 307 popular shopping sites from the Tranco top 10k list. The
researchers found that 42.3% of these sites leak PII to third-party services.

For this study, researchers manually signed up to websites using fabricated
personas to avoid biases introduced by automated bots. This method allowed
them to analyze how personally identifiable information (PII) is handled

10

2.4. Studies

during the sign-up process by collecting HTTP requests, responses, and
cookies.

Due to the manual nature of this data collection and the specific methodolo-
gies involved, reproducing this study within the Privacy Observatory was
infeasible.

11

Chapter 3

Results

In this chapter, we present the outcomes of our attempts to reproduce the
selected privacy studies, providing a general overview and exploratory results
from the two completed studies.

3.1 General results

3.1.1 Overview of reproduction attempts

Table 3.1: Overview of our attempts at reproduction of selected studies, with time taken, the
resources used, the status (S = successful, U = unfinished, F = failed due to inefficiency) and
the number of messages exchanged with original study author.

Publication Time Resources reused Status Messages
DarkDialogs 25h Dataset, Crawler S 0
PURL 22h Crawler U 8
Targeted &
Trouble.

14h Dataset, Crawler U 8

Looking for
SSOme-
thing

47h Minimal crawler,
Post-processing script

F 8

Two studies; PURL and Targeted and Troublesome remain unfinished, as we are
waiting for necessary resources from their respective authors. As mentioned
earlier, PURL requires fixes to its pipeline and code documentation. We are
waiting to receive post-processing scripts needed to analyze the data from
the crawls of Targeted and Troublesome.

12

3.2. Reproduced studies

3.2 Reproduced studies

3.2.1 DarkDialogs

We conducted five crawls on a set of 11 websites to test our reproduction of
the DarkDialogs study. The precise results are detailed in A.7.

On average, each crawl took approximately 86 seconds per website. Extrapo-
lating this to the original dataset of 11,000 websites, suggests it would take
approximately 11 days of non-stop operation to complete the study. This is a
preliminary estimate and assumes linear scalability, which may not hold due
to other operational factors. Nevertheless, it provides a rough indication that
the study is feasible to run on a large scale.

The first two runs were spaced seven days apart, followed by two additional
runs with a two-day interval, and the final two runs were performed on
the same day. The results remained identical across all runs, with the only
variation observed being the time taken for each crawl. This consistency in
the results demonstrates their reliability.

We attempted running a crawl on a list of 500 websites, but we encountered
an issue in the part of the code that processes text found on clickable elements.
This error comes from the Google Translate Ajex API failing to respond to
our requests, probably having blocked our server.

3.2.2 Looking for SSOmething

To test the reproduction of ”Looking for SSOmething”, we ran the crawler
five times (SSO 1 to SSO 3 in Table A.8). We analyzed five websites, among
which only wikipedia.org does not have an OAuth button. We compared
our findings of the OAuth scopes with those reported in the original study,
as shown in Table A.9.

On average, each website took over 30 minutes to process. By contrast, the
original study completed its analysis across 100,000 websites from the Chrome
User Experience Report within 20 days. Given our pace, a similar scale would
require more than 2,000 days, rendering this replication impractical.

Concerning the results:

• The site bookmeter.com consistently failed to load during our trials.

• When manually examining the raw results of the four sites from the
original study, we observed that, with the exception of spotify.com,
their results are accurate. The error is a missing apple button, likely
added after the original study was conducted.

• In every trial, none of connectparts.com.br’s OAuth buttons were
detected.

13

3.2. Reproduced studies

• In one out of four instances, pakwheels.com’s buttons were not detected.
The issue occurred during the last step, which visits OAuth elements,
although the correct buttons were identified by the previous scripts,
this one did not recognize them as OAuth buttons.

From these results, we can conclude that our reproduction is too unstable
and inefficient to be usable.

14

Chapter 4

Discussion

In this chapter we discuss the results from the two reproduced studies,
overview the categorization of issues encountered, and propose three addi-
tional reimplementation principles.

4.1 Reproduction results

From the results of our test runs, two main questions arose. In this section
we provide possible answers.

4.1.1 Consistency

Why is Looking for SSOmething so inconsistent compared to DarkDialogs?

Compared to DarkDialogs, which loads each website once to perform the
crawl, Looking for SSomething reloads a website at each step, for every result
it retrieved in the previous one. This can lead to more inconsistencies, due to
several factors :

Content variability: The website content can change between crawls in sep-
arate steps. This can cause the script to miss elements altogether or
interact with different elements in subsequent runs.

Dynamic content: JavaScript-driven dynamic content, including OAuth but-
tons that appear conditionally or change properties, could lead to
different interactions each time the script runs.

Crawler detection: The crawler could be getting muted or blocked as a
website might recognise subsequent connection, particularly in this
case because it is run with the --no-sandbox option.

15

4.2. Categorization of issues

4.1.2 Performance

Why are the results of Looking for SSOmething” significantly worse than
the original study?

The discrepancy in the results is likely linked to our lack of access to the
complete codebase of the original crawler. Consequently, we had to imple-
ment the management of the data and error handling ourselves. Writing
a substantial amount of code independently could have introduced errors
and bugs as some assumptions made during the implementation might have
been incorrect.

Moreover, while running our reproduction attempt, we encountered many
errors associated with the pychrome package. Although we were told by
the author that these errors can be ignored, it could be possible that they
introduced instability and affect our results. Additionally, the consistent
occurrence of these errors could obscure other significant errors that should
not be overlooked, further impacting our results.

4.2 Categorization of issues

4.2.1 Encountered issues

In this section, we detail the issues encountered and how many would have
been avoidable by following principles by Kast.

P2: Limit external dependencies In DarkDialogs, the use of the Google
Translate Ajax API led to an error while running a crawl on the Tranco top
500 websites, likely due to our server being banned from the service.

P3: UnstabManualle browser binaries When reproducing Darkdialogs a
significant amount of time was spent finding the right version of Chrome,
which was not available online. Similarly, PURL had a browser binary
available, but it was non-functional, so it is imperative that they are stable.

P6: Reimplementation guidance Considerable time was required to under-
stand how to run PURL. Providing clear instructions and outlining expected
behavior is essential to enhance reproducibility.

C9: Used crawler is publicly available Both PURL and Looking for SSOmehing
satisfy this criterion, but Demir et Al’s criteria is insufficient when it comes to
artifacts. While the focus is on sharing code and implementation details, there
is a discrepancy between what is documented in papers and the usability of
the published code. This gap should be addressed to improve reproducibility.

16

4.2. Categorization of issues

4.2.2 Non categorized issues

From our observations we identified three additional principles that should
be taken into account for successful reproduction.

P7: Error handling Code which causes errors can distract attention and
lead to reproducibility issues. It is important to document any normal errors
so that efforts are not wasted trying to fix non-issues.

P8: Efficiency Efficiency is crucial, as demonstrated by Looking for SSOme-
thing. Shared code should be efficient to run and not excessively time-
consuming. Efficient crawling facilitates testing the code on subsets, allowing
quicker identification and correction of issues (e.g., errors in output format).

P9: Manual effort necessary Automated runs are essential for reproducibil-
ity. Studies requiring manual work, such as the Persistent PII study, cannot
be reproduced effectively in automated environments.

17

Chapter 5

Conclusion

This project has highlighted the complexity of creating a generalized base for
reproduction of privacy measurement studies, as each study is implemented
differently and will present its own unique challenges. We reproduced two
studies with the Privacy Observatory, one reproduction was successful, while
the other was inefficient and unstable.

From our attempts, we were able to build upon Kast’s findings to identify
additional principles that, if followed, could significantly ease the process
of reproduction. Moreover, we observed a discrepancy between what is
documented in published studies’ papers and the actual artifacts shared,
revealing a weakness in assessing the reproducibility of a study based solely
on its written description.

18

Bibliography

[1] N. Demir et al., “Reproducibility and replicability of web measurement
studies,” in Proceedings of the ACM Web Conference 2022, 2022, pp. 533–
544.

[2] P. Kast, “Privacy observatory aggregation system for reproduction of
privacy studies,” M.S. thesis, ETH Zurich, 2023.

[3] K. Ruth, D. Kumar, B. Wang, L. Valenta, and Z. Durumeric, “Toppling
top lists: Evaluating the accuracy of popular website lists,” in Proceed-
ings of the 22nd ACM Internet Measurement Conference, ser. IMC ’22, New
York, NY, USA: Association for Computing Machinery, 2022, pp. 374–
387. doi: 10.1145/3517745.3561444.

[4] D. Kirkman, K. Vaniea, and D. W. Woods, “Darkdialogs: Automated
detection of 10 dark patterns on cookie dialogs,” in 2023 IEEE 8th
European Symposium on Security and Privacy (EuroSP), 2023, pp. 847–867.
doi: 10.1109/EuroSP57164.2023.00055.

[5] V. L. Pochat, T. V. Goethem, S. Tajalizadehkhoob, M. Korczyński, and
W. Joosen, Tranco: A research-oriented top sites ranking hardened against
manipulation, 2021. [Online]. Available: https://tranco-list.eu/.

[6] Y. Dimova, T. van Goethem, and W. Joosen, “Everybody’s looking for
ssomething: A large-scale evaluation on the privacy of oauth authen-
tication on the web,” Proc. Priv. Enhancing Technol., vol. 2023, pp. 452–
467, 2023. [Online]. Available: https://api.semanticscholar.org/
CorpusID:259940376.

[7] Chrome ux report, Google Chrome, 2022.

[8] Mongodb: The developer data platform, [Accessed 10 Jun. 2024], MongoDB,
Inc., 2023. [Online]. Available: https://www.mongodb.com.

[9] R. D. Hipp, SQLite, version 3.31.1, 2020. [Online]. Available: https:
//www.sqlite.org/index.html.

19

https://doi.org/10.1145/3517745.3561444
https://doi.org/10.1109/EuroSP57164.2023.00055
https://tranco-list.eu/
https://api.semanticscholar.org/CorpusID:259940376
https://api.semanticscholar.org/CorpusID:259940376
https://www.mongodb.com
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html

Bibliography

[10] Z. Moti et al., “Targeted and troublesome: Tracking and advertising
on children’s websites,” ArXiv, vol. abs/2308.04887, 2023. [Online].
Available: https://api.semanticscholar.org/CorpusID:260735831.

[11] Tracker radar collector, https://github.com/duckduckgo/tracker-
radar-collector, 2023.

[12] Puppeteer, https://github.com/puppeteer/puppeteer, 2023.

[13] H. Dao and K. Fukuda, “Alternative to third-party cookies: Investi-
gating persistent pii leakage-based web tracking,” in Proceedings of the
17th International Conference on Emerging Networking EXperiments and
Technologies, ser. CoNEXT ’21, Virtual Event, Germany: Association for
Computing Machinery, 2021, pp. 223–229, isbn: 9781450390989. doi:
10.1145/3485983.3494860. [Online]. Available: https://doi.org/10.
1145/3485983.3494860.

20

https://api.semanticscholar.org/CorpusID:260735831
https://github.com/duckduckgo/tracker-radar-collector
https://github.com/duckduckgo/tracker-radar-collector
https://github.com/puppeteer/puppeteer
https://doi.org/10.1145/3485983.3494860
https://doi.org/10.1145/3485983.3494860
https://doi.org/10.1145/3485983.3494860

Appendix A

Appendix

A.1 Principles and reimplementation criteria

The principles for reproduction best practice can be found in Table A.2, Table
A.1 contains the description of the criteria for reproduction defined by Demir
et al. [1] and the assessment of the four selected studies is found in Tables
A.3 to A.6.

A.2 Results from test crawls

The results of the test run of DarkDialogs can be found in A.7, whilst the
results of the test runs of Looking for SSOmething and the Oauth buttons
found are in Tables A.8 and A.9 respectively.

21

A.2. Results from test crawls

Table A.1: Description of the reimplementation criteria according to Demir et al.

Category ID Description

Dataset

C1 State analysed sites: States used dataset, toplist, or
user clickstreams, including version.

C2 State analysed pages: Offers a .csv or comparable
with all analysed pages (i.e. distinct URLs).

C3 State site or page selection: Discusses the selection
process of analysed sites.

C4 Perform multiple measurements: Discuss which
pages are analysed in consecutive measurement runs,
if appropriate.

Experiment
Design

Building
the Crawler

C5 Name crawling tech.: Describes the used crawling
technology (e.g. OpenWPM).

C6 State adjustments to crawling tech.: States which
technology features were used and/or (slightly) ad-
justed.

C7 Describe extensions to crawling tech.: Describes
which features were developed to conduct, if any.

C8 State bot detection evasion approach: Discusses
which means were taken that the crawler was not
detected, if necessary.

C9 Used crawler is publicly available: Provides the
crawler in a public location.

C10 Mimic user interaction: Describes how the user
interaction was implemented, if applicable.

Experiment
Design

Experiment
Environment

C11 Describe crawling strategy: Describes which crawl-
ing strategy was used (e.g. stateless vs. stateful).

C12 Document a crawl’s location: States from which
location(s) the study was conducted.

C13 State browser adjustments: Discusses properties of
the browser (e.g. user agent, version, used extensions).

C14 Describe data processing pipeline: Describes the
data processing steps in detail.

Evaluation

C15 Make results openly available: Authors provide
the (raw) measurement results.

C16 Provide a result/success overview: Describes the
outcome of the measurement process on a higher level.

C17 Limitations: Discusses the limitations of the exper-
iment.

C18 Ethical discussion: Discusses ethical implications
of the experiment (e.g. exploiting vulnerabilities).

22

A.2. Results from test crawls

Table A.2: Reproducibility principles identified by Kast

Principle Description
P1 Dockerfile vs. Docker image
P2 External dependencies
P3 Unstable browser binaries
P4 Garbage collection
P5 Certificate expiry
P6 Reimplementation guidance

Table A.3: Demir et al. Criteria for DarkDialogs

Criterion Status Justification
C1 Satisfied Tranco top list October 2021
C2 Satisfied https://doi.org/10.7488/ds/3475
C3 Satisfied ”A sample of 10K websites provides enough

statistical power. Collecting a larger sample
incurs a financial/climate cost that is arguably
unnecessary.”

C4 Omitted
C5 Satisfied Selenium web scraping python library
C6 Doesn’t apply They implemented the crawler
C7 Doesn’t apply They implemented the crawler
C8 Omitted
C9 Satisfied ”We released the source code of the DarkDi-

alogs system in a public repository, along with
system installation and usage instructions.”
github.com/DarkDialogs/OpenScience

C10 Omitted
C11 Satisfied Stateful
C12 Undocumented Uk-based VPN
C13 Satisfied Uses ChromeDriver to load and interact with

the websites using the Chrome browser
C14 Omitted
C15 Satisfied https://doi.org/10.7488/ds/3475
C16 Satisfied Discusses results
C17 Satisfied Discusses it, Section 6.4
C18 Omitted

23

A.2. Results from test crawls

Table A.4: Demir et al. Criteria for PURL

Criterion Status Justification
C1 Satisfied Tranco top-million websites (2019)
C2 Satisfied https://github.com/purl-

sanitizer/purl/blob/main/OpenWPM/sites.csv
C3 Satisfied They explain their choice to ensure that their

crawls cover the most popular websites as well
as lower-ranked websites of varying popularity

C4 Omitted
C5 Satisfied OpenWPM (v0.17.0)
C6 Undocumented States that adjustments were made but did not

specify how
C7 Satisfied OpenWPM extended to record execution in-

formation across HTML, network, JavaScript,
and storage layers during a webpage load

C8 Satisfied Uniformly at random wait an additional 5–30
seconds for bot mitigation.

C9 Satisfied For reproducibility and to foster follow-up
research, PURL’s source code is available at
https://github.com/purl-sanitizer/purl.

C10 Satisfied For each site, we crawl its landing page, ran-
domly scroll and move the cursor, and then
select up to 20 internal pages to visit at ran-
dom

C11 Satisfied Crawler was used in a stateless environment
C12 Undocumented We conduct our crawls from the vantage point

of an academic institution in the US.
C13 Satisfied Firefox (v102) and We turn off all built-in

tracking protections provided by Firefox (En-
hanced Tracking Protection [ETP])

C14 Satisfied States that adjustments were made but did not
specify how

C15 Satisfied https://github.com/purl-
sanitizer/purl/tree/main/data

C16 Satisfied Analysis of PURL with ground truth
C17 Satisfied Discusses it, for example Purl is not suitable

for runtime deployment
C18 Omitted

24

A.2. Results from test crawls

Table A.5: Demir et al. Criteria for Looking for SSOmething

Criterion Status Justification
C1 Satisfied 100k websites of the Chrome User Experience

Report (July 2021)
C2 Satisfied Not public yet
C3 Satisfied They ensured focus on frequently visited sites

by using the CrUX list of top websites
C4 Omitted
C5 Satisfied Chrome Devtools Protocol (pychrome)
C6 Doesn’t apply They implemented the crawler
C7 Doesn’t apply They implemented the crawler
C8 Omitted
C9 Satisfied The full code that we used to detect SSO but-

tons can be found in our public repository
(however it is not yet)

C10 Omitted
C11 Satisfied Crawler was used in a stateful environment
C12 Undocumented Based in the EU
C13 Omitted
C14 Omitted
C15 Satisfied Not public yet
C16 Satisfied Discussed in results
C17 Satisfied Discusses it, Section 9.3
C18 Satisfied Discusses it, Section 3.6

25

A.2. Results from test crawls

Table A.6: Demir et al. Criteria for Targeted and Troublesome

Criterion Status Justification
C1 Satisfied State Analyzed Sites - June/July 2022 crawl

archive now available – Common Crawl
dataset

C2 Undocumented There is a csv file in the code artifact but it is
not mentioned in the paper

C3 Satisfied Uses a curated lists and a classifier to generate
a comprehensive list of child-directed websites

C4 Omitted
C5 Satisfied The study extends Tracker Radar Collector

(TRC)
C6 Satisfied They extended it with extensions
C7 Satisfied New collectors, such as FingerprintCollector,

LinkCollector, VideoCollector, and AdCollector,
were added

C8 Satisfied The study uses TRC’s anti-bot measures
C9 Omitted
C10 Satisfied For mobile crawls, emulating a mobile browser

including spoofing viewport dimensions, touch
support, and user-agent string

C11 Satisfied Stateless
C12 Satisfied Frankfurt, Amsterdam, London, San Fran-

cisco, and New York City
C13 Omitted
C14 Satisfied Analyse photos with cloud vision API and we

get the statistics
C15 Satisfied ”We are working on preparing and doc-

umenting the dataset for release.” On
github.com/targeted-and-troublesome

C16 Satisfied The study describes the outcome of the mea-
surement process, including the prevalence of
trackers and targeted advertisements on child-
directed websites

C17 Satisfied Discusses the limitations of the experiment.
Section 6.3

C18 Satisfied The study discusses ethical considerations.
Section 6.2

26

A.2. Results from test crawls

Table A.7: Results from runs of DarkDialogs

Statistic DD 1 DD 2 DD 3 DD 4 DD 5

Time Taken (seconds) 918.54 1025.93 1001.75 827.24 987.78
Successfully Loaded 1.0 1.0 1.0 1.0 1.0
With Dialog 0.545 0.545 0.545 0.545 0.545
With Cookie on Load 0.833 0.833 0.833 0.833 0.833
With ID Cookie on Load 0.667 0.667 0.667 0.667 0.667
Only Opt-In 0.0 0.0 0.0 0.0 0.0
Opt-Out More Cookies 0.182 0.182 0.182 0.182 0.182
Highlighted Opt-In 0.0 0.0 0.0 0.0 0.0
Obstructs Window 0.0 0.0 0.0 0.0 0.0
Complex Text 0.273 0.273 0.273 0.273 0.273
More Options 0.545 0.545 0.545 0.545 0.545
Ambiguous Close 0.182 0.182 0.182 0.182 0.182
Multiple Dialogs 0.0 0.0 0.0 0.0 0.0
Preference Slider 0.0 0.0 0.0 0.0 0.0
Close More Cookies 0.091 0.091 0.091 0.091 0.091

Table A.8: Results from Looking for SSOmething test runs

Metric SSO 1 SSO 2 SSO 3 SSO 4

Total Time Taken (seconds) 10702.70 11339.66 9858.29 9016.50
Total Sites 5 5 5 5
Loaded Sites 4 4 4 4
Sites with OAuth found 2 1 2 2
Buttons found 4 2 4 4
Sites w OAuth present 4 4 4 4
Buttons present 10 10 10 10
Correctness (Sites) 50.0% 25% 50% 50%
Did Not Load 20.0% 20.0% 20.0% 20%

27

A.2. Results from test crawls

Table A.9: Scopes and OAUth buttons found during different test crawl.With 0 = original study
and i = SSO i

Website Provider Permissions 0 1 2 3 4
bookmeter.com Google profile ✓ × × × ×

openid ✓ × × × ×
email ✓ × × × ×

Twitter content write ✓ × × × ×
Facebook public profile ✓ × × × ×

email ✓ × × × ×
spotify.com Google openid ✓ ✓ ✓ ✓ ✓

email ✓ ✓ ✓ ✓ ✓
profile ✓ ✓ ✓ ✓ ✓

Facebook default ✓ × × × ×
Apple email × ✓ ✓ ✓ ×

name × ✓ ✓ ✓ ×
connectparts.com.br Facebook email ✓ × × × ×

Google email ✓ × × × ×
profile ✓ × × × ×

pakwheels.com Facebook email ✓ ✓ ✓ ✓ ✓
Google email ✓ ✓ × ✓ ✓

profile ✓ ✓ × ✓ ✓

28

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that
− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.
− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

	Contents
	Introduction
	Background
	Selected publications

	Methodology
	The Privacy Observatory
	Components
	Input and Output Handling
	Scheduling Studies

	Artifacts
	How to Reproduce a Study
	Collection of artifact
	Implementing the Study in Docker
	Deploying and Monitoring the Study

	Studies
	DarkDialogs
	PURL
	Everybody’s Looking for SSOmething
	Targeted and Troublesome
	Investigating Persistent PII Leakage-Based Web Tracking

	Results
	General results
	Overview of reproduction attempts

	Reproduced studies
	DarkDialogs
	Looking for SSOmething

	Discussion
	Reproduction results
	Consistency
	Performance

	Categorization of issues
	Encountered issues
	Non categorized issues

	Conclusion
	Bibliography
	Appendix
	Principles and reimplementation criteria
	Results from test crawls

