
Enforcement Bots: Nothing can
block us!

Automating website registration for GDPR
compliance analysis

Bachelor Thesis

Patrice Michael Kast

2nd of March 2021

Advisors: Prof. Dr. David Basin, Karel Kubicek

Department of Information Security, ETH Zürich

Abstract

Since most web service registrations require an email address, users
provide the service contact information that can be used to send mar-
keting emails against their will. To prevent sending these unsolicited
emails, countries introduced regulations. Namely in the EU, the ePri-
vacy Directive defines the rules of sending marketing emails and the
General Data Protection Regulation (GDPR) defines the consent users
must give to subscribe to mailing lists. In order to inspect the compli-
ance of a website by monitoring marketing emails, we have to register
for each of these services, and then observe what types of emails the
service is sending us.

Because manual registration is a tedious process, in this work we de-
velop and deploy a crawler, which allows us to scale up the compli-
ance analysis. We call this fully automated crawler enforcement bot
(enfbot). These enfbots are able to detect a registration form, fill it
with artificially generated data, submit it, and check whether the reg-
istration was successful. As websites intend to block automated regis-
trations, we had to overcome bot detections such as various versions
of CAPTCHAs. Enfbots can detect, extract, and pass the CAPTCHA
riddle using a third-party CAPTCHA solver. To evaluate the sign-up
success rate of these enfbots, we conducted a large-scale measurement
analysis by crawling the one million most popular websites from the
Tranco domain list. The enfbots successfully registered to 4.0% of web-
sites, which corresponds to 40’000 web pages. As the required com-
putational time was 6.79 years, we had to accelerate the process by
parallelization. We deployed the crawler using Docker and with an 80
core server we speeded up the process 60-fold.

i

Acknowledgement

I would like to extend my sincere thanks to Professor David Basin and the
Information Security Group for funding this project as well as the provi-
sion of the use-case to develop the complex automated registration process
described in this thesis.

I’m deeply indebted to Karel Kubı́ček, my mentor in this research project
who has taught me a lot about data processing with Selenium, programming
in Python and working with Docker images and Docker Compose. These
technologies were completely new to me at the beginning of this thesis.

I am grateful to have been able to do this work and to have further developed
my experience in the field of web crawling and GDPR compliance.

Last, I would like to acknowledge the support as well as the unlimited cloud
computing resources provided by the KastGroup GmbH1, without which
the crawling process of the one million most popular websites of the internet
would not have been possible within one month time.

1https://kastgroup.com/

ii

Contents

Contents iii

1 Introduction 1
1.1 Legal regulations . 1
1.2 Automated compliance analysis 2
1.3 Challenges . 3

2 Registration process 4
2.1 Initial state of the crawler . 4
2.2 Pre-registration scannings . 5
2.3 Registration page detection . 5
2.4 Registration form detection . 5
2.5 Dummy user credentials . 6
2.6 Input field detection . 6

2.6.1 Select object . 7
2.6.2 Radio inputs & checkboxes 8
2.6.3 Regex based value generation 8

2.7 Bot protection . 8
2.8 Submitting registration form 8
2.9 Two-step CAPTCHA . 9
2.10 Registration validation . 9

2.10.1 State keywords detected 10
2.10.2 Registration form disappeared 10
2.10.3 Redirect detected . 10

2.11 Data aggregation . 10
2.12 Keyword-based algorithms . 10

3 CAPTCHAs 12
3.1 Types of CAPTCHAs . 12
3.2 Human solving service . 13

iii

Contents

3.2.1 Costs . 14
3.3 reCAPTCHA v2 . 14

3.3.1 Visible . 14
3.3.2 Invisible . 15
3.3.3 Detection . 15
3.3.4 Solving . 15

3.4 reCAPTCHA v3 . 16
3.4.1 Detection . 16
3.4.2 Solving . 17

3.5 hCaptcha . 17
3.5.1 Detection . 17
3.5.2 Solving . 18

4 Distributed crawling 19
4.1 Headless browsing . 19
4.2 Job distribution . 20

4.2.1 Crawling database . 20
4.3 Docker host . 20

4.3.1 Docker volume . 21
4.3.2 ProtonVPN . 21

4.4 Docker . 21
4.5 Docker Compose . 22
4.6 Optimizations . 22
4.7 Costs . 23

5 Registration statistics 24
5.1 Successful registration statistics 24
5.2 Unsuccessful registration analysis 24

5.2.1 No registration form on website 24
5.2.2 Broken websites . 25
5.2.3 Link keyword detection 25
5.2.4 Complex registration process 26
5.2.5 Non-EU language . 26
5.2.6 Malformed input injection 26

5.3 Different codebases . 26
5.3.1 Version 1.0 . 26
5.3.2 Version 1.1 . 26
5.3.3 Version 1.2 . 27
5.3.4 Version 1.3 . 27
5.3.5 Comparison: version 1.0 vs. version 1.3 27

5.4 Number of emails received . 28

6 Additional observations 29
6.1 Bot protection mechanisms . 29

iv

Contents

6.1.1 Sign-up form in an iframe 29
6.1.2 Multistep submit process 29

6.2 CAPTCHA solving service secret keys 30
6.3 Comparison: BuiltWith vs. own usage stats 30
6.4 File system out of space . 31
6.5 Crawling monitoring . 31

7 Related work 32
7.1 OpenWPM platform . 32
7.2 Automated registration . 32
7.3 Automated sign-in . 33

8 Discussion 34
8.1 Future work . 34
8.2 Conclusion . 35

Bibliography 36

Appendix 38
Sources . 38

v

Chapter 1

Introduction

Based on DataProt 36% of all world spam content consists of advertisement
emails1 of which 80% are ignored in the inbox by the user2. Due to personal
interests or a complicated unsubscribe process, only 0.17% of users sign out
of mailing lists3 where 43% give as the reason for doing so that they don’t
recognise the brand or don’t remember signing up to newsletters4. It is often
unknown from which source these companies could obtain user data and if
they are in the right to do so. In this thesis, we5 propose a programmed reg-
istration procedure, which is a critical component of creating an automated
process to analyse such data flows and law violations on a big scale.

1.1 Legal regulations

Such data collection is strictly regulated in the ePrivacy Directive of the EU
[5], which describes the usage of email for direct marketing. As a general
rule, this requires the prior consent of subscribers (Art. 3). The concrete
definition of consent is defined in the European General Data Protection
Regulation (GDPR) [4] which would be applicable in the European Union
(EU) and the European Economic Area (EEA).

In case a company does not comply with the mentioned directives, a citizen
of the European Union may report the privacy violation to legal authorities,
which may fine the firms up to 20 million EUR or 4% of their worldwide
turnover.

1https://dataprot.net/statistics/spam-statistics/
2https://www.zettasphere.com/gmail-promotions-tab-inbox-delivery-stats/
3https://www.campaignmonitor.com/resources/knowledge-base/what-is-a-good-

unsubscribe-rate/
4https://optinmonster.com/is-email-marketing-dead-heres-what-the-statistics-show/
5Even though most programming, running the experiments, and writing the thesis text

was performed by myself, the plural is used in this thesis. The implementation of the crawler
was joined work with Karel Kubı́ček, the authorship is clarified in Section 2.1.

1

1.2. Automated compliance analysis

1.2 Automated compliance analysis

While these fines are threatening, the enforcement lacks behind. As a user,
the individual damage claims are low in contrast to the high effort to sue
websites. To raise awareness for privacy of internet service providers, we
propose the usage of enforcement bots, called enfbots. They scan the internet
on a regular basis and can also be used by administrative regulators like the
French CNIL or the English ICO.

To be able to analyse marketing emails on a large scale, we have to store
a working email address on the newsletter mailing lists. Doing this man-
ually does not scale. Thus the goal of this thesis is to fully automate the
user registration process on websites using the Selenium Framework since
user interaction and JavaScript execution is needed to bypass bot detection
mechanisms.

We took the Tranco list6 [7], generated on 11 December 2020, containing the
one million most often used websites as a base for our compliance crawling.
This domain list was specifically chosen since it is free to use, versioned for
reproducibility, and more resistant to popularity manipulations than Alexa
top 1M.

Figure 1.1: Flowchart of the enfbots with rectangles for states and rounded ones for intermediate
steps.

6https://tranco-list.eu/list/89WV/1000000

2

1.3. Challenges

The flowchart in Fig. 1.1 visualises the internal logic of our fully automated
process. The following sequential procedure is initiated on giving an enfbot
a specific hostname:

1. crawling a given domain for pages containing a registration form,

2. searching for privacy policy and terms & conditions related to the
registration form,

3. generating user credentials for a registration,

4. checking if there is any bot detection mechanism (e.g. CAPTCHAs) in
place and bypass these,

5. trying different submission methods on the complete registration form,

6. scanning the website for post-registration bot detection mechanisms,

7. testing for indications of a successful registration with the browser,

8. checking the mailbox for account confirmation emails and clicking on
confirmation links, and

9. scanning the mailbox in regular intervals for marketing emails, which
may be GDPR violations, as we never gave our consent.

1.3 Challenges

Multiple challenges arise when automating this registration process.

1. The keyword link detection does not always work when locating the
sign-up form.

2. It is complicated to determine the correct type of each input field.

3. A bot protection mechanism can block the submission of registration
forms.

4. Different ways of submitting a sign-up form can improve the success
rate.

5. A successful registration might not be correctly validated.

6. Since the large crawl with an unparalleled enfbot would take several
CPU years, it has to be speeded up by deploying parallelism.

By an iterative improvement of the source code and many testing rounds,
we were able to solve all these challenges and register to 39’343 websites. Al-
though the total computing time was 6.79 years, we completed the crawling
within 4 weeks due to distributed computation.

3

Chapter 2

Registration process

To analyse the handling of personal data and email notifications by websites,
we need to place trackable email addresses in the corresponding newsletter
and customer mailing lists. The registration process on these sites would
need to be done in a similar way as a typical internet user would do.

Due to the variety of different implementations available, it is not possible
to cover all website mailing list registration types. However, as we will
demonstrate, it suffices to design a process that works for a representative
sample of websites to gather enough data for the following processes. We
developed a crawler using a generic sign-up approach that is not tailored to
any specific website, such as Jonker et al. [6] have implemented.

2.1 Initial state of the crawler

Other members of the team at ETH Zurich already created the base of the
crawler as well as the email detection service prior to the beginning of this
work. The following components and features were part of the base of the
crawler.

URL input loading This provides the initiation of the crawling process of a
specific hostname.

Selenium driver This component is used to open a website in a Selenium
instance using gekodriver and the Firefox browser.

Website surfing This routine searches for relevant keywords in link HTML-
tags to find the registration page, the privacy policy, and the terms of
use.

Form filling This procedure fills in all inputs within a registration form us-
ing type-detected values.

4

2.2. Pre-registration scannings

Database interactions These are used to store new websites and to modify
related entries.

This given crawler base was significantly extended during this thesis. Be-
sides, the original crawling process was split into two parts; one for auto-
mated scraping of website registration forms and the other for the manual
annotation work, done by human workers.

2.2 Pre-registration scannings

First, the crawler tries to detect the used language on the website with the
polyglot1 Python library and uses the value of the lang-attribute of the
HTML-tag as a fallback. The latter was not used as a primary selector since
it is often wrongly specified.

2.3 Registration page detection

The next step of the automation process is to navigate from the landing
page of a website to the registration page. This can be achieved by using
keyword detection on all available hyperlinks and searching for key-phrases
like ’sign up’, ’register’, ’create account’ in English and the detected language
on the website. The searchable keywords are translated into 28 European
languages since our focus is on European websites and web services target-
ing European citizens.

In case no direct registration page link could be located, the crawler tries to
identify the login page for recurring users. Often, there exists an option or
hyperlink to create a new account on these pages. In case no such option
is provided to the user, the URL of the login page is scanned for specific
keywords which can be replaced with terms like ’create’, ’join’, ’registration’
to locate the registration form.

For example, when having the URL http://example.com/login, we test if
the URL http://example.com/register resolves and returns a 200 HTTP-
code which confirms that a request has been processed successfully.

2.4 Registration form detection

After locating a potential registration page, all available forms are indexed
by the number of user input fields such as email- and password-inputs and
consequently sorted in decreasing order by the number of total inputs. Be-
sides testing for at least one email input, the indexed form with the highest
number of password inputs gets selected for further processing.

1https://pypi.org/project/polyglot/

5

2.5. Dummy user credentials

This procedure is required if a registration and a login form are present on
the same page. Since a registration form often has more input fields than
a simple login form, like a requirement to repeat the new password or the
used email address, the probability to select the correct form increases with
the above algorithm.

In case a suitable form is detected, the found website is stored in the database
and the registration page is marked as a successful hit. Otherwise, it is
flagged as Not-Available N/A and the enfbots continue crawling other do-
mains.

2.5 Dummy user credentials

To be able to assign an incoming marketing email to a specific website, a
new unique email address is generated for each registration together with
the following user details:

• first-, last- & full-name,

• username,

• street name & number,

• city & postal code,

• country,

• birth-date,

• phone, and

• password.

These values get stored in the database for later input field injection.

The introduced credentials describe a person situated in Germany to be able
to test for any GDPR violations later on. However, this artificially generated
user is not associated with any real person, neither does the address exists
nor is the phone number registered at the point this thesis was written.

2.6 Input field detection

Assuming a suitable registration form was found, all input fields as well as
textareas get indexed and tested if they require to be filled in with the cor-
responding user details. This is done by searching for the HTML required

attribute and assessing the input type & class to figure out if it is an essen-
tial part of the registration process. This is the case with types like passwords,
emails or usernames. Moreover, the enfbots scan the nearest embedded text

6

2.6. Input field detection

next to the input HTML-tag, if it contains an asterisk char indicating neces-
sity.

We use a keyword-based assignment process to fill in the correct user cre-
dentials. After filling in all the categorised input fields, the remaining ones
are checked for requirement. In case they are, a random value of the correct
type is injected.

Figure 2.1: example sign-up form on parfumo.de

Figure 2.1 shows an example of a typical sign-up form containing a select

HTML-tag for gender selection as well as one for the country. To submit the
form, the terms & conditions checkbox has to be accepted and the riddle of
the reCAPTCHA has to be solved.

2.6.1 Select object

To deal with select objects which often are required (e.g. users gender
or country of residence), the enfbots scan their options to select the first

7

2.7. Bot protection

item with non-whitespace value or innerText and which does not possess
a disabled attribute.

2.6.2 Radio inputs & checkboxes

In contrast to the select objects, the crawler deals with radio inputs in a
far less sophisticated way, since their usage is non-uniformly and often one
option is as good as any other. For each name related to radio HTML-tags,
it is searched for the first occurrence without the disabled attribute within
the sign-up form which is then automatically clicked().

Checkboxes on the other hand are automatically selected in case they are
detected to be required, based on the assessment explained in Section 2.6.

2.6.3 Regex based value generation

The pattern attribute was introduced in HTML 5, which allows a website to
ask the browser for custom input validation, based on regular expressions.

After the keyword-based input generation is completed, it is checked if the
input is type=text and contains a pattern attribute. If this is the case, the
reverse regex function from the rstr Python library is used to generate a
matching value to the input field. This process is only performed on inputs
of type text since we want to prevent the replacement of any better matching
values and identifiers like email addresses.

2.7 Bot protection

Azad et al. [1] showed that at least 13.6% of the Alexa 1M websites use some
sort of bot protection mechanism to prevent bots from creating accounts,
whilst based on BuiltWith, 19% of all websites are using a CAPTCHA sys-
tem2. Since CAPTCHA-systems can be instantiated and configured in differ-
ent ways, we will explain the further solving process in detail in Chapter 3.

2.8 Submitting registration form

After filling the form with the generated user credentials and during solving
the CAPTCHA, a screenshot of the website is taken for further analysis.
Additionally, the terms & conditions and the privacy policy are stored in an
HTML-file.

Since we need to submit the form we filled in to place our email in the
mailing list of the website, the submission process is essential. During test-
ing, it was discovered that the default submit() function of Selenium is not

2https://trends.builtwith.com/widgets/captcha

8

2.9. Two-step CAPTCHA

working on every discovered form. The reason for this behaviour could not
be located. By reverse-engineering the Selenium library, the corresponding
JavaScript code was found:3

1 driver.execute_script('arguments[0].submit();', obj)

Since this code is Vanilla JavaScript, we were able to prevent failure excep-
tions by testing the type of the function to be executed. Furthermore, it
was brought to light that in the other cases, where the code above generates
faults, the submit() function has to be called as a click event on the sub-
mit object. Thus, the following two lines were implemented to support the
submission of the prepared registration form:

1 browser.driver.execute_script('if(typeof arguments[0].submit === "function"){

arguments[0].submit(); }',obj)↪→
2 browser.driver.execute_script('if(typeof arguments[0].submit.click ===

"function"){ arguments[0].submit.click(); }',obj)↪→

In later tests, it was even discovered that calling the submit() function on
registration forms directly may trigger an empty page reload, probably im-
plemented as bot protection. For this reason, an algorithm was written
which first tries to click on buttons and input[type=submit] before call-
ing submit() on the form. In case a candidate button was found, it gets
tagged with a custom class which is later used as an indication, that the
click() event actually submitted the form. Otherwise, the fallback method
from above is used by submitting the form directly.

2.9 Two-step CAPTCHA

Some websites display a CAPTCHA to verify an account creator is human
just after the form submission. This is due to some price savings since
website administrators are charged with each spawning of a CAPTCHA. By
delaying the instantiation post the registration form submission, costs can be
cut down. To complete the automated registration process, the crawler has
to check for any signs of an active CAPTCHA system that tries to prevent the
registration by a bot. If it found any, the solving process of the CAPTCHA
is repeated.

2.10 Registration validation

In case the registration form could be submitted and no two-step CAPTCHAs
could be found or if they were already solved, the success of the registration
has to be validated. This can be achieved as explained in the following
sections.

3The embedded code examples in this thesis are partly substituted for better readability.

9

2.11. Data aggregation

2.10.1 State keywords detected

To detect a registration state with redirects, we also scan the text of the
HTML for keywords that indicate a failure or a success as the result of the
automated process. These keywords are verified not to be existent before
the form submission, to make sure no text which is already embedded on
the page beforehand is matched. The content is then extracted from the
HTML-code by removing the tags and ignoring the inner values of tags like
script, header, style or meta.

2.10.2 Registration form disappeared

After a successful registration the form often completely disappears. If we
detect the same form as before the registration attempt or fetch ”non-success-
indicating keywords” in the response, it can be assumed that the registration
failed due to some false value-injections on the inputs or not checking all
mandatory checkboxes.

2.10.3 Redirect detected

In case the user is redirected to a URL that fulfils the following requirements,
the registration is regarded as successful.

Different hostnames indicate the redirect of the user to another subdomain.

Different paths imply the relocation of the user within a site.

These conditions were defined based on observations during tests with a few
hundred domains. The query part of the URL is not considered intentionally,
due to some malformed form submission over GET, which submits the user
inputs as unsafe query parameters to the server.

2.11 Data aggregation

After the crawling, data aggregation is performed with two storage locations,
one for saving files and the other for structured data. All information ex-
tracted from the website is stored in a central database that contains cookies,
credentials used for sign-up as well as CAPTCHA extractions. Screenshots
of the filled-in registration form as well as terms & conditions and privacy
policies HTML source codes are stored in the file system in an output direc-
tory for later bug tracing and analytics.

2.12 Keyword-based algorithms

All mentioned keyword-based algorithms in this thesis try to use words
in the detected language of the website as well as in English as possible

10

2.12. Keyword-based algorithms

fallback values. After starting just with English and German translation, we
decided to automatically translate our wordlists into every major national
language which is spoken in a country within the EU and thus under GDPR
protection.

Table 2.1 shows the translated languages used together with crawling statis-
tics of how many websites were found in the given language.

English (en) 37.38% Latin (vai) 0%
German (de) 3.61% Latvian (lv) 0.04%
Albanian (sq) 0.02% Lithuanian (lt) 0.03%
Basque (eu) 0.01% Luxembourgian (lb) 0.001%
Bosnian (bs) 0.01% Macedonian (mk) 0.01%
Bulgarian (bg) 0.08% Maltese (mt) 0.001%
Catalan (ca) 0.05% Norwegian (no) 0.10%
Croatian (hr) 0.05% Polish (pl) 0.64%
Czech (cs) 0.30% Portuguese (pt) 0.71%
Danish (da) 0.13% Romanian (ro) 0.17%
Dutch (nl) 0.74% Russian (ru) 3.53%
Estonian (et) 0.02% Serbian (sr) 0.06%
Finnish (fi) 0.10% Slovak (sk) 0.10%
French (fr) 1.60% Slovenian (sl) 0.03%
Galilean (gl) 0.013% Spanish (es) 1.67%
Greek (el) 0.24% Swedish (sv) 0.19%
Hungarian (hu) 0.17% Turkish (tr) 0.73%
Icelandic (is) 0.01% Ukrainian (uk) 0.17%
Irish (ga) 0.002% Welsh (cy) 0.003%
Italian (it) 0.64%

Table 2.1: Used languages for keyword-based detections

On a total of 373’852 websites, the detected language was not of European
origin and thus the website was not further analysed. In addition, it has to
be noted that the user agent we used to access the websites indicated English
as the desired website language. Thus, these numbers may not correspond
to the native language of these websites if they additionally support English
as an option.

With Brexit, the UK will not be part of the EU any longer. Nevertheless,
it will have similar data protection levels as it was confirmed on the 19th
of February 2021, by the European Data Protection Board in an adequacy
decision.4

4https://ec.europa.eu/info/law/law-topic/data-protection/international-dimension-
data-protection/brexit en

11

Chapter 3

CAPTCHAs

To prevent bots from registering to email or newsletter services, many web-
sites deploy some sort of bot detection mechanism. The most efficient way
of achieving this is by asking the interacting user to solve a riddle, a so-
called CAPTCHA, which complicates the automated process of registration
as described in this thesis.

CAPTCHA was originally designed for academic studies by Von Ahn et
al. [9], but over the last few years, some CAPTCHA-systems became quite
popular and are widely used today. In the following sections, the most pop-
ular CAPTCHA-systems get introduced and it is explained how to bypass
them. The information concerning their popularity is taken from BuiltWith,
an internet crawler that detects software components integrated into web-
sites.1

3.1 Types of CAPTCHAs

After consulting the usage distribution of diverse implementations, we de-
cided to focus our work on the following most often used CAPTCHA-systems
based on BuiltWith.

reCAPTCHA v2 Visible (6% of the one million most popular websites2)
The reCAPTCHA v2 system was designed by Google and displays a
riddle to the user, which has to be solved prior to the form submis-
sion.3

1https://trends.builtwith.com/widgets/captcha
2https://trends.builtwith.com/widgets/reCAPTCHA-v2
3https://developers.google.com/recaptcha/docs/display

12

3.2. Human solving service

Invisible reCAPTCHA (similar usage to reCAPTCHA v2, see Footnote 2)
In contrast to the visible system, the invisible one is only displayed to
the user in case the probability of being a bot is high.4

reCAPTCHA v3 (3.5% of the one million most popular websites5)
The reCAPTCHA v3 plugin is a further development of Google and
the successor of v2. It is almost completely server-side and rates a
specific user with a bot score in the interval from 0.0 to 1.0.6

hCaptcha (0.0375% of the one million most popular websites7)
The hCaptcha was created to provide a better privacy data protection
to the user in contrast to the reCAPTCHA-systems.8

Neither the most famous image CAPTCHA model where the user is given
an image and has to enter a number nor the math CAPTCHA model is
asked by the CAPTCHA-systems above. The reason we did not implement
a solving strategy for the image CAPTCHA was that there does not exist
one popular uniformly used CAPTCHA-system. Since almost all of these
systems have individual implementations, we would not have the resources
to cover them for our work. Thus this task was postponed to be solved in
future work as mentioned in chapter 8.1.

Based on BuiltWith, less than 0.3% of websites containing a CAPTCHA are
not solvable by the enfbots since another CAPTCHA-system is implemented.
The most basic version of displaying an image or math CAPTCHA directly
within a form and only use server-side routines to verify the user’s answer
may not be detected by BuiltWith and thus is not included in the 0.3%.

3.2 Human solving service

Since the project aims to design a fully automated registration process, the
CAPTCHAs can not be solved by hand. Thus, a capable CAPTCHA solving
service had to be found.

Multiple machine learning based approaches were tested but none of them
delivered reasonable results when it came to solving a modern CAPTCHA-
system like the one described in this chapter. An exception to this statement
are the services that state on their website that they use machine learning
for the solving process, but are clearly based on human-computing power.
The following human solving services were further assessed:

4https://developers.google.com/recaptcha/docs/invisible
5https://trends.builtwith.com/widgets/reCAPTCHA-v3
6https://developers.google.com/recaptcha/docs/v3
7https://trends.builtwith.com/widgets/hCaptcha
8https://www.hcaptcha.com/

13

3.3. reCAPTCHA v2

• AntiCaptcha9,

• AZCaptcha10, and

• ImageTyperz11.

After testing their capabilities by providing samples to solve, we finally de-
cided to use the ImageTyperz service which never returned a false-solved
CAPTCHA riddle response or a timeout during the evaluation.

Other providers did sometimes fail at the given tasks and also wrongly
stated on their website that they would rely on machine learning to solve
the CAPTCHAs.

The specific ways of detecting and solving these CAPTCHA types using the
selected ImageTyperz service is explained in detail in the next sections.

3.2.1 Costs

Crawling the one million of most popular websites resulted in a total of
22’524 successful solving-requests which is equal to USD 35.76$. Even though
the enfbots did not detect any CAPTCHA related errors, ImageTyperz stated
a total of 5’380 timeouts on their dashboard. We were not able to detect these
because we set the maximum crawling time of one page to 180 seconds in
the enfbots, which may be below the timeout value of the CAPTCHA solv-
ing service.

3.3 reCAPTCHA v2

Googles reCAPTCHA v1 was developed back in 2009. While the original
version is no longer supported, their v2 service is the most implemented
CAPTCHA-system worldwide.12

The two ways of implementing the reCAPTCHA v2 system are visible and
invisible, further described below.

3.3.1 Visible

To protect from bots, the easiest and most often used way to instantiate
the reCAPTCHA is by embedding it directly within the HTML-form. Prior
to submitting any information, the user has to verify his humanness by
clicking a checkbox called ”I am not a robot”. In case the reCAPTCHA
algorithm detects anomalies during that process, the user is given a keyword

9https://anti-captcha.com/mainpage
10https://azcaptcha.com/
11http://www.imagetyperz.com/
12https://trends.builtwith.com/widgets/reCAPTCHA

14

3.3. reCAPTCHA v2

and matching images to select. Only if the user succeeds in this test, he is
allowed to finally submit the form. The backend of the website receives a
confirmation through an API call to Google, that the user is not a bot.

3.3.2 Invisible

In contrast to the visible reCAPTCHA v2, the invisible reCAPTCHA is
not shown to the user with exception of the privacy banner ”protected by
reCAPTCHA”. Again, the user interaction is monitored before the form-
submission and in case of suspicion, a similar riddle like in the visible ver-
sion would be displayed.

3.3.3 Detection

To detect a reCAPTCHA v2, a target website is scanned for a script tag con-
taining /recaptcha/api.js path in the link. Next it is searched for a custom
onload() function, a render=explicit or render=hidden parameter in the
source code of the site. Since these options are only used in reCAPTCHA
v2, the CAPTCHA-system of the website can be identified and classified ac-
cordingly. Additionally, in case the script tag does not fulfil the conditions
to be reCAPTCHA v3 (see chapter 3.4), the v2 is used as a fallback type.

3.3.4 Solving

As soon as the user response is accepted, the visible and the invisible type
reCAPTCHA v2 inject a secret token payload into a hidden HTML input ele-
ment which is then sent to the server. At the backend, the website can query
API endpoints from Google if the token is valid and the user is classified as
not being a bot.

Since there is no validation of whether the IP of the user solving the reCAP-
TCHA and the IP where the form submission originates are identical, it is
possible to outsource the solving of the riddles to specialised services using
human workforce.

In order to enable the external service to solve the reCAPTCHA for our
automated crawling process, the sitekey of a website is extracted and sent
along with the solve request. This key is often found as an attribute in a div

HTML-tag containing class="g-recaptcha" like the following one:

1 <div class="g-recaptcha" data-sitekey="XXXXXXXXX"

data-callback="submit_form"></div>↪→

The sitekey can also be defined in a custom onload callback function, which
is called by the reCAPTCHA plugin after loading. This function would be
declared in the api.js script tag, which links to the reCAPTCHA JavaScript
plugin.

15

3.4. reCAPTCHA v3

1 <script src="https://www.google.com/recaptcha/api.js?onload=olC">

2 </script>

3 <script type="text/javascript">

4 var olC = function() {

5 grecaptcha.render('html_element', {

6 'sitekey' : 'XXXXXXXXX',
7 'callback' : 'submit_form'
8 });

9 };

10 </script>

After receiving the required response from the human solving service, the to-
ken payload is automatically injected into the hidden HTML-textarea with
id="g-recaptcha-response" which originally was created by the reCAP-
TCHA plugin within the registration HTML-form on page load.

Some websites add custom flags or processes to the HTML-form by defining
a reCAPTCHA callback function which is executed on successful riddle solv-
ing. This function would be defined either within the same HTML-object or
the onload callback function as the sitekey was found. A detected custom
callback routine is executed prior to submitting the form.

To get the content of the custom callback function from the JavaScript files
we use regular expressions due to the applied encapsulation. In contrast, the
extraction from the HTML-attribute works with a simple getter method.

3.4 reCAPTCHA v3

The main difference of reCAPTCHA v3 as the successor of the reCAPTCHA
v2 system is that the newer version does not use any user interaction. A
JavaScript-tag must be existent in the head section of the HTML-code to
analyse the interactions of a user with the browser. So-called actions allow
the reCAPTCHA v3 system to protect different HTML-forms on the same
page. These actions need to be included in every form for later reference.

After the submission of the registration HTML-form, the recorded user be-
haviour is analysed and a score from 0.0 to 1.0 gets calculated which then
indicates the probability of the user being a human. This rating can be re-
trieved via an API call by the backend of the website to decide whether a
registration request should be granted or declined.

3.4.1 Detection

The reCAPTCHA v3 is implemented on a website by inserting a script tag
sourcing /recaptcha/api.js in a similar way as it was done in the older
v2 system. The JavaScript will instantiate the new system by the time the
sitekey is handed over within the render attribute. By the collection of

16

3.5. hCaptcha

testing data received through web crawling, we discovered that the sitekey

has an exact length of 40 chars. Thus, if a render attribute is detected in the
script HTML-tag with the corresponding length, the system is classified as
reCAPTCHA v3.

1 <script src="https://www.google.com/recaptcha/api.js?render=XXXXXXXXX">

Sometimes the presence of this CAPTCHA-system can also be revealed by
testing if the grecaptcha cfg.clients JavaScript object is existent and
represents a value greater or equal 10.

1 if exec_js("if(typeof ___grecaptcha_cfg != 'undefined') {

___grecaptcha_cfg.clients }") and int(↪→
2 exec_js("Object.keys(___grecaptcha_cfg.clients)[0]")) >= 10:

3 captcha_type = CaptchaType.ReCAPTCHAv3

3.4.2 Solving

One way of solving this CAPTCHA is to retrieve the sitekey as well as the
correct action parameter, located as an attribute in the class="g-recaptcha"
HTML-tag. Afterwards, the human solving service is requested for a user-
token that originates from a user with clean browser history and human-like
website interactions. The result is used to replace the user-token within the
hidden id="g-recaptcha-response" HTML-textarea, which was generated
on loading the website. By submitting the request with this new user-token
we achieve that the registration is done in the name of a trustworthy non-bot
user and will thus be accepted. The difficulty is to reach a score level that is
accepted by the website.

3.5 hCaptcha

Quite similar to reCAPTCHA v2, a user who wants to submit an HTML-
form protected by hCaptcha must solve a riddle. This can again be done
by selecting the correct images matching a given keyword. As stated on
their website, the improved privacy aspects concerning tracker cookies are
the biggest difference to Google’s reCAPTCHA.

3.5.1 Detection

To protect an HTML-form on a website with the hCaptcha-system, a script
tag containing src="https://hcaptcha.com/[version]/api.js" has to be
included in the head section of the HTML-code. In addition, a HTML-tag
class="h-captcha" has to be inserted within the form. If we are able to lo-
cate these requirements on a website, the CAPTCHA is ultimately classified
as hCaptcha.

17

3.5. hCaptcha

3.5.2 Solving

Like in the other CAPTCHA-systems, a website is identified using an em-
bedded sitekey in the class="h-captcha" HTML-tag. This key is for-
warded to the human solving service for answering the given riddle and
returning the secret-token. We then need to inject the token into a hidden
name=h-captcha-response HTML-textarea that finally is submitted along
with the registration request.

1 <div class="h-captcha" data-sitekey="XXXXXXXXX"></div>

18

Chapter 4

Distributed crawling

Small tests prior to the planned one million domain crawl indicated an im-
mense amount of computation time needed to run the Selenium browser,
later determined to be 6.79 years. Therefore, it was decided to convert the
complete crawling setup to Docker containers. By using Docker Compose,
the number of running containers had been massively scaled up and par-
allelisation became possible. In comparison to running a big number of
virtual machines, Potdar et al. [8] showed that Docker containers generate
much less overhead. Another benefit was the circumstance that these con-
tainers are much faster deployable which significantly contributed to the
development.

4.1 Headless browsing

To reduce the memory usage for the required parallelisation on the enf-
bots, the Selenium browser needed to run headless. Even though Firefox
supported a --headless option, crawler designers as Zeber et al. [10] are
worried that this option may be detected easily by websites using browser
fingerprinting. More sophisticated techniques were pulled from Englehardt
et al. [3].

Since we do not want to be classified as bots, we have taken the advantage of
the pyvirtualdisplay1 Python package in combination with Xvfb2. By us-
ing these libraries which draw the graphical interface of the browser inside
the virtual frame buffer the desired functionality was reached. This buffer
allows to take screenshots of the filled out registration form for a later re-
trace of failures during the crawling. This approach of running the browser
headless was also used in the OpenWPM project (chapter 7.1).

1https://pypi.org/project/PyVirtualDisplay/
2https://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml

19

4.2. Job distribution

4.2 Job distribution

The existing base of the crawler provided the following simple parameters
for controlling the crawler:

-u: path to the file containing the domains to scrap,

-f: index in domain list to start scrapping from, and

-t: index in domain list to stop scrapping.

To achieve a balanced crawling job distribution with parallel workers, a static
URL list was not flexible enough. Instead, the jobs table was added to
the database, containing all the domains to crawl and the start date and
end date of the related crawling process.

Through the start and end information, it was possible to recrawl a domain
on an unexpected failure of the enfbots. Jobs which have a start date older
than two hours and an end date still set to NULL are cleared for reprocessing.
Each enfbot selects a random non-finished domain from the available jobs
repeatedly until all entries are crawled.

4.2.1 Crawling database

To control the complete crawling processes as well as to store the structured
data, a PostgreSQL database is used which is handled by the Python object
relation-mapping package Pony ORM3. This component was first located at
servers of the ETH. Due to firewall configurations which posed an issue to
management and accessibility from outside the ETH network, a different
approach had to be taken.

Since the Docker host was already located inside a private data center and
therefore not within the ETH network perimeter, the decision to move the
database to a cloud-based hosting service seemed a good option to mitigate
the problem.

4.3 Docker host

We first tried to run the Docker host on a CentOS 8 operating system. Since
the development of the source code for the enfbots was done using an
Ubuntu virtual machine, running on CentOS 8 resulted in many failures.
Thus we decided to base the Docker Host on an Ubuntu 20.04 Image. Inten-
tionally, a complete Desktop Ubuntu distribution was installed to feature an
easier installation and maintenance, since the X server is installed by default
and can be enabled or disabled.

3https://ponyorm.org/

20

4.4. Docker

As the ETH supercomputer does not provide any internet access by policy,
the Docker Host was set up on a virtual machine running on a private Prox-
mox4 cluster to overcome this limitation.

4.3.1 Docker volume

On the Docker Engine, a Volume named crawling output was created as a
persistent storage for the scraped terms & conditions, privacy policies, and
the screenshots taken by the enfbots.

4.3.2 ProtonVPN

To load websites exactly in the way they would be presented to a user from
the European Union (where the GDPR is applicable), a paid VPN service
was subscribed from ProtonVPN5 which auto-connected at boot time of the
Docker Host VM. At the first attempt, it was discovered that the database
traffic was not able to reach the crawling database trough the proton0 VPN
interface. Thus, a startup script was installed to create a route over the direct
ens18 interface of the virtual machine, which is not routed over VPN.

4.4 Docker

The individual Docker containers were built based on a Dockerfile. A sim-
pler version already existed in the source code prior to this thesis.

The Dockerfile is based on Ubuntu 20.04 and instructs the Docker Engine to
combine the following tasks:

• copy the complete python3 source code into the container,

• install all required software like python3, Firefox, Xvfb, npm or Node.js,

• use pip to fetch the required python3 packages for the advanced crawl-
ing process, and

• prepare the execution environment by declaring the entry bash script
for starting the crawling as well as defining environment variables.

The most important property of Docker is its easy deployment as well as
the ability to be run by anyone, independent of the hardware specifications.
An additional benefit is that the results of this study can be reproduced as
required in a simple way.

4https://www.proxmox.com/
5https://protonvpn.com/

21

4.5. Docker Compose

4.5 Docker Compose

The written Dockerfile could be used in combination with Docker Com-
pose, a service which can connect the central Docker Volume as well as
the Docker Network to containers without specifying it on every execution
in the command line.6 Using the restart condition, the Docker Engine can
be instructed to keep the containers running at all time, also on restart of
the host VM. On starting the Docker Container with docker-compose up

--scale enfbot=n --detach, the enfbot container can be scaled up by n-
times for n concurrent running enfbots.

4.6 Optimizations

The docker host virtual machine was initially equipped with 16 kvm64 as-
signed cores and 30 GB of RAM to run 10 Docker containers. The desktop
mode of Ubuntu was disabled by updating the grub loader, which freed 1
GB of RAM.

Subsequently, the crawling performance of different configurations of at-
tached resources and the number of concurrent Docker containers was mea-
sured over a period of 6 hours. The result is shown in Table 4.1.

Cores RAM (GB) Containers Domains per day

16 30 10 4’488
16 70 30 11’400
24 50 30 16’800
80 100 30 31’604
80 400 30 31’700
80 400 45 40’832
80 100 60 44’320
80 400 60 57’142

Table 4.1: Crawling performance

The most performance limiting hardware component was the number of
assigned CPUs to the VM, while the RAM was never fully utilised. Since
the Proxmox cluster only supported virtual machines with up to 24 cores,
the Docker host had to be transferred to a single, more-powerful hypervisor
which allowed a scale up to 80 Cores. The new hypervisor specifications
were 80 x Intel(R) Xeon(R) CPU E7-8870, 512 GB RAM running Proxmox
6.3-2.

6https://docs.docker.com/compose/

22

4.7. Costs

With the scaled up hardware resources and by completing the crawl, we dis-
covered that the most limiting component was the available network band-
width that was restricted to 150 Mbit/s due to a misconfiguration. Another
limitation was identified as storing all the data in one single output directory
which also caused a slow-down on progressing in the large crawl.

Finally, we learned from our measurement that the best configuration for the
Docker setup is to allocate at least one processor for each container together
with approximately 10 GB of RAM and 5 GB of disk space.

4.7 Costs

Since we received the computational resources used in this thesis without
charging the costs, we rely on publicly available information of Microsoft
Azure and on Amazon Web Service (AWS) to estimate the costs incurred
by the crawling process of the one million most popular websites. Our
configuration for this assessment was as follows:

• Ubuntu 20.04,

• 80 Processors (CPU),

• 400 GB of RAM,

• 600 GB of Diskspace,

• computation-time of 34 days, and

• dedicated host / on-demand.

These requirements resulted in an average estimated cost of USD 5’039$
for the complete crawling process or 0.50 cents per processed domain if we
would go with dedicated hardware. In case we switch to Spot instances and
accept the small overhead, on AWS it may be as cheap as USD 1’132$ or 0.11
cents per processed domain.

23

Chapter 5

Registration statistics

It took a total of 30 days to complete the whole top 1M Tranco domain list,
with 4 days of interruption due to unexpected failures. Out of the 1’000’000
websites, the registration process verification resulted in 39’343 successfully
created accounts. The crawl collected screenshots and page sources of all
visited websites, a total of over 4 million files, taking 137 GB of storage.

In this chapter we present the results and inspect the failing registrations,
showing which of the individual steps caused the failures.

5.1 Successful registration statistics

Our enfbots managed to register to 3.9% (39’343) of crawled websites. This
was determined by our register verification techniques as described in Sec-
tion 2.10. Of these successful registrations, 9.7% (3’801 websites) used a
CAPTCHA which the enfbots detected and successfully passed. On the
other hand, we detected a CAPTCHA-system on 1.6% of all websites (16’308)
of which only 23.3 % led to a verifiable success of the followed registration.

5.2 Unsuccessful registration analysis

To improve the enfbots, we manually analysed 100 websites chosen ran-
domly where our automated registration failed. The assessment that we
summarised in Fig. 5.1 provided useful insights which we categorised into
the following 6 types of failures on which we elaborate below.

5.2.1 No registration form on website

69 of 100 failed websites did not contain a way to sign up or create a new
account as the enfbots correctly determined. Of these, 10 target websites did
only contain a login form for a closed community whilst the others did not

24

5.2. Unsuccessful registration analysis

0 20 40 60

no registration form

broken website

keyword detection failure

custom registration process

non-EU language

malformed input injection

% of failures

Figure 5.1: Distribution of registration failure sources. The highlighted labels mark an error
related directly to the enfbots.

have an account system implemented at all. The non-existence of a registra-
tion form explained the failure to detect the input fields and therefore the
failure was not related to the crawling process of the enfbots.

5.2.2 Broken websites

In ten of the 100 analysed samples, the HTTP request either resulted in a
DNS failure, a timeout, or contained the directory listing of the web folder
in the HTTP result. This behaviour indicates that the Tranco domain list is
not up-to-date and websites were collected over a longer time. Again, no
failure was related to the enfbots.

5.2.3 Link keyword detection

Since we used keyword detection to browse a page for the registration form,
it was expected to be the most error-prone component of the crawling pro-
cess. This was confirmed since nine of the analysed failed registration at-
tempts could be led back to neither detecting a registration- nor login-related
keyword in the HTML tags.

Most often, the reason for not detecting the correct login-path was the usage
of icons instead of text to navigate a user through the website. We address
this issue in version 1.3 of the codebase, explained in Section 5.3.4.

25

5.3. Different codebases

5.2.4 Complex registration process

In nine cases, the failures could be combined to the general problem of
not being able to detect a custom registration process on the website. Two
websites did not allow a registration without completing an order, two hid
their content behind a landing page, two gave a user multiple options of
creating different types of accounts, and in three cases the sign-up form
was instantiated using JavaScript with a delay after the page load, where
the enfbots did not wait long enough. To mitigate this issue, JavaScript
procedures in the Browser could be tracked or a larger sleeping-time could
be implemented after a page load before the detection process starts.

5.2.5 Non-EU language

In only two of the failed registration attempts we analysed, the enfbots cor-
rectly detected non-EU languages (Vietnamese and Japanese in the analysed
samples). Since these websites are clearly not targeting users originating
from the EU, this source of failure can be ignored. On these websites the
enfbots just tried to register using English keywords as fallback.

5.2.6 Malformed input injection

In one observation the error could be traced back to an incorrect input value
generation, where the website did not provide a regex pattern for a specific
input field whose value was checked afterwards using JavaScript. Since the
expected input was the BMI of a user, our keyword detection algorithm had
no chance of categorising it correctly.

5.3 Different codebases

In this section, we describe the incremental improvements to the crawling
process and compare two presented versions on a random sample of 10’000
websites.

5.3.1 Version 1.0

We label the first version of the source code capable of register on CAPTCHA
protected websites 1.0. This code was also used for the scaled crawling.
While the statistics in this chapter relate to this code, we propose several
optimisations based on our observations.

5.3.2 Version 1.1

We noticed that the naive strategy of selecting the first non-disabled option
of a select HTML-tag was the reason why Afghanistan was always chosen

26

5.3. Different codebases

as the country of our fictitious user, as it is alphabetically the first country
available. Since Afghanistan is a non-EU region and thus the GDPR may
not apply to user data entered on the websites, we decided to implement a
keyword-based linear search through all non-disabled options in expectation
to detect a Germany-residence option. While this does not directly improve
the registration rate, it enhances our abilities to detect privacy violations.

5.3.3 Version 1.2

In this version, we tried to improve the completeness of the form inputs, by
filling more than the determined required input fields. In addition to check-
ing for a required attribute or asterisk character, the text of checkboxes is
also tested for marketing related keywords. When none of the marketing
keywords has been detected, it is searched for other keywords indicating
terms & conditions or a privacy policy and if found, we mark this HTML-
input as maybe-required. This keyword mapping process is implemented in
two steps, since often multiple checkboxes are described using the same
text object, where they are embedded in, and thus we would risk subscrib-
ing to any optional mailing lists as well. To further minimise this risk, the
registration form is submitted by filling in only required inputs on the
first attempt and if the same form is re-detected after the page-reload, also
maybe-required checkboxes are checked.

5.3.4 Version 1.3

As explained in Section 5.2.3, a big percentage of websites rely on icon-
buttons instead of text-links with the result that the correct registration page
could not be located with our keyword-based approach. Therefore we pro-
pose the scanning for alt and title HTML-attributes on all link HTML-tags
and their children, since these attributes are often used to allow navigation
through the website for blind people.

In addition, we followed the recommendations by Jonker et al. [6] who no-
ticed that iterating over many HTML elements using the Selenium API is
significantly slower than an equivalent executing with Vanilla JavaScript. So
we created the keyword crawler of alt & title HTML-attributes directly in
JavaScript.

5.3.5 Comparison: version 1.0 vs. version 1.3

By rebuilding the Docker containers based on version 1.3 of the source
code, we recrawled 10’000 websites to be able to compare the registration
successes. After a total crawling time of 5 hours instead of 7.2 hours, the
enfbots achieved a registration success on 4.0% of the websites, which is a
slight improvement compared to the 3.9% success rate of version 1.0. This is

27

5.4. Number of emails received

equivalent to 1’000 additional websites when scaled up to the whole Tranco
domain list.

5.4 Number of emails received

Throughout the iterative testing rounds, we received 89’851 emails. Fig. 5.2
shows the number of received emails since the beginning of the large crawl.
Of the 89’473 emails, only 86’571 were sent to addresses created for the large
crawl. The remaining 2’902 were received by addresses we used for iterative
improvements of the crawler. We received at least one email from 6’779 web-
sites of the 39’343 webpages where we registered successfully. Although it
is expected that many websites do not communicate with the user unless he
would need to reset his password, this low communication rate suggests that
our detection of successful registrations may be too optimistic. In contrast,
2’550 websites sent emails where we did not observe a successful registra-
tion. Both observations imply that the validation of a successful registration
is error-prone and should be improved.

2020-12-15 2020-12-26 2021-01-07 2021-01-18 2021-01-30 2021-02-10 2021-02-22
date

0

20000

40000

60000

80000

of

 e
m

ai
ls

Email type
TOTAL
MARKETING
SERVICING

Figure 5.2: Number of received servicing- and marketing emails.

28

Chapter 6

Additional observations

6.1 Bot protection mechanisms

During the crawling of test websites, we detected that some web-pages use
additional techniques to distinguish a human from a bot. The two most
often experienced cases are described below.

6.1.1 Sign-up form in an iframe

One simple way of making the registration form inaccessible or hard to
detect for an automated process is to include it by using an iframe with the
sign-up form embedded. The bot can detect the iframe on the site but since
google ads tracking and other services are likely to be implemented using
iframes, it is a hard task to classify the correct iframe as a registration form
holder.

6.1.2 Multistep submit process

Another way to design a registration process which is challenging for auto-
mated processes whilst keeping the requirements for humans low is to di-
vide the sign-up form into multiple steps, showing the input fields and the
submit button one-by-one. Annotation statistics, made prior to this thesis
showed that 8% of websites use this interactive approach, while 4% spawn
their registration forms within a JavaScript-driven pop-up.

This could be handled easily by also filling values in all hidden input fields
or by designing the automated registration process more adaptive. The first
idea could trigger other implemented bot protection systems, since normal
users are not able to fill in inputs in the user interface which are hidden.

29

6.2. CAPTCHA solving service secret keys

6.2 CAPTCHA solving service secret keys

During the development of the adaptive Python-based CAPTCHA solving
process, research for existing solutions which used the same CAPTCHA
solving service was done on GitHub and similar public source repositories.
Although there were many projects which integrate the AZCaptcha or the
imagetyperz service, none of them were designed to adapt to a random page
on the internet. Almost all codes were designed to brute-force a predefined
login- or newsletter-form with hardcoded parameters in the script.

Amazingly, most of these attack scripts contained the secret keys for the solv-
ing service accounts inline as a string variable. Using the account balance()

function, we discovered that some secret keys were connected to accounts
having paid solving-credits, a few even worth multiple hundred US dollars.
These found keys were not used for crawling by our project and the only
routine which was executed was the account balance() function that does
not deduct the credit-balance of the owner.

6.3 Comparison: BuiltWith vs. own usage stats

Our initial decision of which CAPTCHA-system should be automatically
solved in the registration process was based on the statistics from BuiltWith,
an online service that scans the internet for indications of specific service
implementations. By crawling the one million most popular websites and
having a rather precise detection algorithm for CAPTCHA implementation
chosen to be solved, a reasonable comparisons with BuiltWith and our own
results can be done.

CAPTCHAs \ Sources BuiltWith Enfbots

reCAPTCHA v2 6.0% 1.06% (+ 0.08%)
reCAPTCHA v3 3.5% 0.48%
hCaptcha 0.038% 0.006%

Table 6.1: Distributions of CAPTCHA-systems. The additional number for reCAPTCHA v2
represents the detected invisible versions, as BuiltWith does not differentiate these.

These deviations, which can be seen in Table 6.1, can have several reasons as
BuiltWith is based on their own domain list and this thesis is based on the
Tranco domain list. In addition, due to only scanning a registration form for
any CAPTCHAs, we completely ignore the rest of the website. In contrast,
BuiltWith searches the whole webpage. Nevertheless, a similar trend in the
distribution of the different CAPTCHA systems can be observed in both
data sets.

30

6.4. File system out of space

6.4 File system out of space

Initially, the Docker host was equipped with a virtual hard drive of 400
GB storage capacity. Due to the increasing backup time of larger disks, the
storage area was kept small. After three weeks of crawling, there was no
space left on the device and the Docker containers stopped working. To
mitigate this issue, we resized the hard disk to 1.2 TB. By trying to use the
gParted1 tool to enlarge the volumes as well as to resize the filesystem, the
startx server had to be used. Since there was no space left, starting startx was
not possible anymore. Thus, programs taking up space had to be removed
first to free up space.

It would have been much easier to fix this issue if a storage placeholder
would have been created from start. This file could have been deleted safely
in this scenario. At this point, using the command below, a placeholder of
size 500 MB was created.

1 $ truncate -s 500M dummy_placeholder

6.5 Crawling monitoring

Without a monitoring service which would have tracked the progress of the
crawling process, the database had to be checked manually every few days
if the crawling is still on-going. In the absence of a proper e-mail alerting
service, a total of 4 days of computation-time was lost due to multiple late-
detected crashes of the crawling process.

1https://gparted.org/

31

Chapter 7

Related work

Prior to developing the automated registration process for the enfbots, re-
lated work was consulted for out-of-the-box approaches or other useful in-
sights which could be used during the implementation.

7.1 OpenWPM platform

Due to the lack of a generic modular platform to perform web privacy mea-
surements (WPM) in easy ways, Engelhardt et al. [3] designed OpenWPM.
It contains multiple modules which guarantee a stable operation of the Sele-
nium browser driver, which is integrated underneath this platform.

OpenWPM provides a way for bots to perform measurements on websites
in combination with user sessions where the login process is implemented
by simply relying on Facebook’s federated login system1. This is an identifi-
cation provider which is implemented on a notable percentage of websites.
Since the enfbots rely on measurements taken during the registration pro-
cess itself and do not want to limit themselves to websites supporting these
third-party identification providers, the sign-up procedure would need to
be implemented by talking directly to the browser driver API underneath
OpenWPM. The initial position would be similar to using the standard Sele-
nium automation while minimising the overhead of OpenWPM. Therefore,
we decided not to use the OpenWPM platform.

7.2 Automated registration

As we did with the enfbots, the paper from Chatzimpyrros et al. [2] describes
a generic approach of automated registering to websites and they achieved
some impressive results according to presented statistics. In contrast to the

1https://developers.facebook.com/docs/facebook-login/overview

32

7.3. Automated sign-in

enfbots, the validation of a registration may be less sophisticated since it is
not described at all. This can be the reason for a high registration success
rate of 26.4% in the Alexa top 200’000 domain list.

While running a really good user-tracking detection system, the most im-
pressive test the researchers performed was to inject email addresses into
forms without submitting them and leaving the registration process incom-
plete. After checking the inbox, they received more than 700 reminder
emails containing offers as well as discounts. Since we received 2’550 emails
not related to a successful registration as mentioned in Section 5.4, they
could originate from a similar phenomenon.

7.3 Automated sign-in

Jonker et al. [6] used crowd-sourced credentials to automatically login to
websites with their automated sign-in bot Shepherd. The goal was to per-
form scans and enable security testing from within the logged-in area. It is
a similar approach to the enfbots but concentrates on the login rather than
the sign-up. However, the used crawling process is comparable to our used
techniques.

As with the enfbots, keywords are used for the location of the sign-in page
and assessed for English as well as other detected languages on a website. In
addition to failure keywords for registration validation, the page is scanned
for a logout button. From this particular paper, we learned how to speed up
the scanning for keywords in link HTML-tags using direct JavaScript instead
of the Selenium API.

33

Chapter 8

Discussion

8.1 Future work

Due to the long testing and crawling process, we were unable to implement
new features within the time constraint of this thesis. The following ideas
sketch the most promising next steps.

Machine learning based page classification: Many websites require as the
first step of a registration the choice of an account type or the consent
to the terms & conditions. We plan to distinguish the final registra-
tion form from these preliminary pages by using a machine learning
model. In addition, we can use another model to classify successful
registrations. This would allow us to expand the state automaton to
also be able to fill in multi-step sign-up forms.

Keyword detection with ranking: The current keyword detection can match
different types of links or form inputs by matching keywords from the
list of synonyms in multiple languages. Currently, the enfbots choose
the last matched type, but we plan to compare the likelihood of differ-
ent matches by ranking them by probability.

Mitigation of bot detection: To further increase the number of registration
successes, we will migrate the complete codebase to OpenWPM in
order to use their sophisticated bot-protection bypassing algorithms,
which will cover up the enfbots better. We will accept a possible over-
head using OpenWPM and continue talking directly to the browser
driver API.

Solving image CAPTCHAs: By implementing an additional component, we
will complement the CAPTCHA solver with the ability to detect and
solve generic image-based CAPTCHAs. The logic for this procedure
has already been worked out.

34

8.2. Conclusion

Adaptive sleeping timers: Instead of relying on hardcoded sleeping times,
these could be managed dynamically based on website speed and
other indications. Thus, JavaScript-driven registration form instanti-
ations would be missed less likely.

Hopefully, one day, we will be able to register to almost all websites contain-
ing some sort of sign-up process.

8.2 Conclusion

The task of monitoring the handling of personal information for marketing
purposes is an essential part of enforcing the strict GDPR regulations. Due
to the tedious process of having to register on every single website, the only
efficient way to achieve this is by using automated web crawlers as explained
in this thesis.

The automation arises multiple challenges, which we all addressed in the
enfbots implementation. The data gathering of scanning the one million
most popular domains provided us further important insights into CAPTCHA
implementations, registration process patterns, and we also observed how
we need to further improve our crawler by numerous optimisations.

The work presented here can form the foundation for further research that
focuses on the topic of web data protection. We are looking forward to
further extend the capabilities of the crawler and gather even more insights
into the data handling procedures of online services.

35

Bibliography

[1] Babak Amin Azad, Oleksii Starov, Pierre Laperdrix, and Nick Niki-
forakis. Web runner 2049: Evaluating third-party anti-bot services.
pages 135–159, 2020.

[2] Manolis Chatzimpyrros, Konstantinos Solomos, and Sotiris Ioannidis.
You shall not register! Detecting privacy leaks across registration forms.
In Computer Security, pages 91–104. Springer, 2019.

[3] Steven Englehardt, Chris Eubank, Peter Zimmerman, Dillon Reisman,
and Arvind Narayanan. OpenWPM: An automated platform for web
privacy measurement. Manuscript. March, 2015.

[4] European Parliament, Council of the European Union. General data
protection regulation (GDPR): Regulation (EU) 2016/679 of the Euro-
pean Parliament and of the Council of 27 April 2016 on the protection
of natural persons with regard to the processing of personal data and
on the free movement of such data, and repealing directive 95/46/ec.

[5] European Parliament, Council of the European Union. Directive
2002/58/EC of the European Parliament and of the Council of 12 July
2002 concerning the processing of personal data and the protection of
privacy in the electronic communications sector (directive on privacy
and electronic communications), 2002.

[6] Hugo Jonker, Stefan Karsch, Benjamin Krumnow, and Marc Sleegers.
Shepherd: A generic approach to automating website login? 2020.

[7] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Ma-
ciej Korczyński, and Wouter Joosen. Tranco: A research-oriented top
sites ranking hardened against manipulation. February 2019.

36

Bibliography

[8] Amit M Potdar, DG Narayan, Shivaraj Kengond, and Mohammed Moin
Mulla. Performance evaluation of docker container and virtual ma-
chine. Procedia Computer Science, 171:1419–1428, 2020.

[9] Luis Von Ahn, Manuel Blum, Nicholas J Hopper, and John Langford.
CAPTCHA: Using hard AI problems for security. pages 294–311, 2003.

[10] David Zeber, Sarah Bird, Camila Oliveira, Walter Rudametkin, Ilana
Segall, Fredrik Wollsén, and Martin Lopatka. The representativeness
of automated web crawls as a surrogate for human browsing. pages
167–178, 2020.

37

Appendix

Sources

We decided to publish the complete source code including all the results to
allow others to reproduce our study and further improve the described and
used techniques in this thesis. The source code can be found on GitHub1

while the crawling output is located on Google Drive2. To simplify the
inspection of the crawling output files, the files were compressed into a
total of 1’365 zip archives. The name of each zip file indexes the first two
characters of all analysed domains that are contained in this archive. Please
note that all credentials used for user registration on websites as well as
database connection credentials were removed prior to uploading.

1https://github.com/PatriceKast/enfbots/
2https://drive.google.com/drive/folders/1EA1RQwcUiKayJufaZs-BVQcxpSxQjZc2

38

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that
− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.
− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

Enforcement Bots: Nothing can block us!

Automating website registration for GDPR compliance analysis

Kast

Patrice Michael

Wetzikon ZH, 01.03.2021

	Contents
	Introduction
	Legal regulations
	Automated compliance analysis
	Challenges

	Registration process
	Initial state of the crawler
	Pre-registration scannings
	Registration page detection
	Registration form detection
	Dummy user credentials
	Input field detection
	Select object
	Radio inputs & checkboxes
	Regex based value generation

	Bot protection
	Submitting registration form
	Two-step CAPTCHA
	Registration validation
	State keywords detected
	Registration form disappeared
	Redirect detected

	Data aggregation
	Keyword-based algorithms

	CAPTCHAs
	Types of CAPTCHAs
	Human solving service
	Costs

	reCAPTCHA v2
	Visible
	Invisible
	Detection
	Solving

	reCAPTCHA v3
	Detection
	Solving

	hCaptcha
	Detection
	Solving

	Distributed crawling
	Headless browsing
	Job distribution
	Crawling database

	Docker host
	Docker volume
	ProtonVPN

	Docker
	Docker Compose
	Optimizations
	Costs

	Registration statistics
	Successful registration statistics
	Unsuccessful registration analysis
	No registration form on website
	Broken websites
	Link keyword detection
	Complex registration process
	Non-EU language
	Malformed input injection

	Different codebases
	Version 1.0
	Version 1.1
	Version 1.2
	Version 1.3
	Comparison: version 1.0 vs. version 1.3

	Number of emails received

	Additional observations
	Bot protection mechanisms
	Sign-up form in an iframe
	Multistep submit process

	CAPTCHA solving service secret keys
	Comparison: BuiltWith vs. own usage stats
	File system out of space
	Crawling monitoring

	Related work
	OpenWPM platform
	Automated registration
	Automated sign-in

	Discussion
	Future work
	Conclusion

	Bibliography
	Appendix
	Sources

