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Abstract

Logging is an essential practice in software engineering and provides runtime infor-
mation about a system. In this thesis, we propose a method that automatically
logs function calls for the three programming languages Java, Python, and Go. We
study four di↵erent methods to achieve automated logging, namely monkey patching,
aspect-oriented programming, interpreter modification, and program transformation.
For each programming language, we implement the method that requires minimal
changes in the system and can be integrated e�ciently into an existing project. The
automatically generated logs provide features for automatic processing and analy-
sis. For example, they can be used to automatically check compliance in General
Data Protection Regulation (GDPR) projects. We evaluate our implementation on
an e-commerce application and measure the performance and storage of our meth-
ods. The experiments in Java and Python show that the CPU utilization does not
increase more than twofold with automated logging. However, logging all function
calls creates big data sets. In Java, for example, the storage increases by a factor
of about 1300. Developers can reduce the log size by specifying what paths in the
source code should be automatically enhanced with logging.

1



Acknowledgements

First of all, I would like to thank Professor David Basin and the Information Security
Group for the opportunity to write this thesis. I enjoyed working in this creative and
inspiring atmosphere, and to get an insight into di↵erent areas in computer science,
including software engineering, information security, and machine learning. Further-
more, I would like to thank my supervisors, Karel Kub́ıček, Dr. Carlos Cotrini
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Chapter 1

Introduction

1.1 Motivation

Logging is a common practice in software engineering and stores important runtime
information about a system. The importance of logging can be identified by many
use cases such as debugging, anomaly detection, performance diagnosis, and system
behavior understanding. Studies of industrial systems show that manual logging is
often incomplete and varies across projects. Especially with the growing complexity
of software systems, it is di�cult to find consistent logging behavior. We will examine
this in Chapter 2.

Automated logging adds log statements automatically to the program. The log
format is consistent and enables machine processing. In this paper, we study and
implement automated logging in the detailed granularity of function calls.

Functions, as the name indicates, often describe the functionality of a program.
Automated logging of function calls can provide a basis to automatically check com-
pliance with the General Data Protection Regulation (GDPR). Automatic analysis of
the logs can show how the system handles personal data and verify that it is processed
compliant with GDPR.

The goal is to achieve automated logging of function calls with the least intrusive
method. That means that the integration requires minimal changes in the system.
To the best of our knowledge, there was no previous work that automatically logs
function calls in the way we want to achieve it in this thesis.

1.2 Contribution

We propose a method that automatically logs function calls for the three programming
languages Java, Python, and Go. These programming languages are translated in
three di↵erent ways, compiled to bytecode, interpreted, and compiled to assembly
code, respectively. For each programming language, we evaluate di↵erent methods
for automated logging and choose the one with the lowest degree of intrusiveness, such
that the integration requires minimal changes. Furthermore, we show that aspect-
oriented programming is suited to implement automated logging. We also provide
implementations. This thesis provides automatically generated fine-grained logs that
can be used to apply machine learning techniques and analysis of runtime behavior,

5



in particular, to understand runtime behavior in GDPR compliance projects. For
the implementations, we measure the e↵ect of automated logging in terms of CPU
performance and storage. The results show that the CPU does not increase more
than twofold. To handle the generate log data, we provide di↵erent approaches.
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Chapter 2

Related Work

2.1 Research

Zhu et al. [38] propose and implement a framework LogAdvisor, which helps de-
velopers to make informed logging decisions. The main idea of this framework is to
learn common logging “rules” automatically. A machine learning model (e.g., deci-
sion tree) is trained to perform logging predictions. The goal is to predict if a code
snippet should be logged or not. To train the model, LogAdvisor extracts useful fea-
tures from logged code snippets. Feature extraction is the core of “learning to log”
because the quality of the features determines the performance of the model. LogAd-
visor proposes a feature extraction framework that extracts structural, textual, and
syntactic features from a focused code snippet. Structural features contain exception
types and the name of included and called methods. Textual features contain the
names of variables and types. To better identify code snippets that require no log-
ging, the framework also extracts syntactic key features, e.g., assignment statements
with special values such as null or false. Fig. 3 in the paper shows an overview of
the framework.

The authors evaluate LogAdvisor on two industrial systems with millions of C#
code lines. Overall, the balanced accuracy, which is the average of the proportion of
logged instances and the proportion of unlogged instances that are correctly classified,
is high. The results ranging from 84.6% to 93.4%, indicating a high similarity to the
manual logging decisions made by developers. The authors performed a user study,
where 37 developers decided whether to log or not to log on code snippets with
removed logging statements. The accuracy of correct log statement recovery was
60% for the group without logging suggestions, while the group with LogAdvisor
suggestions achieved an accuracy of 75%.

The paper highlights the importance of logs for system behavior as we intend to
achieve in our thesis. In particular, the paper explains feature extraction for machine
learning methods. However, there are significant di↵erences in our work. First of
all, LogAdvisor only provides suggestions to developers where to log and does not
construct any log statements automatically. Secondly, the evaluation reveals that
developers log only about 8% of the methods and that LogAdvisor will not suggest to
log most of the function calls. In contrast, we want to log all function calls. Thirdly,
LogAdvisor does not extract information about methods as detailed as we aim to do
with arguments and return value.
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Fu et al. [15] provide an empirical study of the logging behavior of developers on
two large industrial systems, each with millions of code lines. From these systems, the
authors randomly sample 100 logging statements and divide them into five categories.
The categories are assertion-check (19), return-value-check (14), try-catch (27), logic-
branch (16), and uncategorized logging (24). A logged code snippet is a block of
source code whose behavior the logging statement intends to log. For example, return-
value-check code snippets check the return value of a function call for special values
(e.g., null, false, -1). Further analysis of the source code shows that developers
log only 30-42% of the catch blocks in exceptions and 8-9% of the function calls.
Moreover, there are correlations between logged code snippets and specific keywords,
e.g., “delete”. Developers do not log the majority of catch blocks (58-70%) for three
main reasons. First, passing logging to subsequent operations. Secondly, exceptions
are recoverable. Thirdly, exceptions are not critical. In other words, the decision to
log for a code snippet is often highly related to the semantics of the code snippet.

The authors further examine logging behavior via a questionnaire survey with 54
experienced developers. The questionnaire consists of two specific questions: what
scope of source code and what factors do developers mostly consider on the decision
whether to log? For the source code scope, the participants consider the function
containing the exception (69%) and the corresponding try block (61%) as the most
important information. 57% of the participants consider the exception type and 46%
the function calls related to the exception as the most important decision factors.

Based on the findings from the empirical study, the authors propose a machine
learning model to predict whether to log for a code snippet. For this purpose, the
authors consider try-catch and return-value-check snippets. To understand the func-
tionality of these snippets, the authors extract the names of included and called func-
tions, the name of the class, and the keywords in comments as features. In addition,
the snippets contain a label logged or unlogged. With these features and labels, the
authors train a classifier model, which shows a high precision of 90.2% using 10-fold
cross-validation.

The paper presents that, in most cases, the functionality of a code snipped can be
well understood based on the names in this snippet. This is important for our thesis
since we also want to log information about functions to describe the behavior of a
program. However, we aim to log more information than the name about functions
such as argument and return values. Moreover, the proposal from the paper only
considers code snippets that contain try-catch and return-value-checks. Here, we
show the advantage of our approach over Fu et al.’s with an example that is logged
in our approach but is not suggested to log in Fu et al.’s approach. Consider the
code snippet in Figure 2.1. Fu et al.’s approach would not suggest to log this snippet
because it contains no try-catch block and no return-value-check. Our approach logs
this snippet because we log all function calls. Overall, this paper proposes a method

void transferTo(Account bank, double x){
withdraw(x);
bank.deposit(x);

}

Figure 2.1: counterexample
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to suggest whether to log or not, but does not generate logs automatically as we
intend to achieve.

Shang [31] provides a pilot empirical study on large software systems. The goal
is to bridge the divide between software development and software operation. The
paper presents two approaches to leverage field knowledge from operations to improve
the software quality in development. First, a high log churn enables identification of
software bugs. Log churn denotes the frequency of changing log statements in the
source code. I.e., a log statement that has changed many times has a high log churn.
Using the development history to measure the amount of log churn, one can build
statistical models to predict post-release bugs. Secondly, developers can measure test
coverage by comparing logs from a test system with logs from the production system.
The coverage is the ratio between the called functions in the test system and in the
production system. The paper also presents two approaches to leverage development
information to improve the quality of operations. First, one can document log lines
automatically by attaching development history and bug reports to log lines, such that
operators can understand the rationale behind a log entry. Secondly, development
can indicate the a↵ected log statements in a new release such that the operators can
apply a log filter to check the new release in production more e�ciently.

An empirical study of ten large software systems highlights that logs change at a
rather high rate across versions, although 40-60% of these changes are not necessary.

This paper shows the importance of logs to gain knowledge about a program.
However, this paper does not describe a mechanism of automated logging for func-
tion calls. The paper studies the gap between software development and operation
empirically and shows approaches that use logs to improve the quality both in devel-
opment and operations. Overall, the focus is mainly on analyzing logs for a specific
purpose and not automatically generating logs of function calls as we want to accom-
plish in our work.

2.2 Frameworks

Spring Cloud Sleuth [27] implements a distributed tracing solution. A dis-
tributed tracing is a method to profile and monitor applications to analyze perfor-
mance and identify bugs. It is particularly used in microservices architecture to track
communication between processes. Sleuth builds upon the widely used Spring [26]
framework for Java. Sleuth enables us to capture interactions with external systems
and store them, e.g., in logs. For example, sending a remote procedure call (RPC)
can be such an interaction. Sleuth can serve as an essential tool for enhancing logs
between distributed systems. Moreover, it helps to solve the diagnosis problems of
multiple services. Sleuth provides a way to track function calls in network communi-
cation similarly as we intend in this thesis. However, Sleuth does not track function
calls within processes in contrast to our approach.

Apache Thrift [3] is a lightweight framework for scalable cross-language services
development. Apache Thrift is available for several programming languages, including
Java, Python, and Go. Apache Thrift allows us to define data types and service inter-
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faces in a definition file. The compiler generates code to build RPC clients and servers
that communicate across programming languages. Apache Thrift’s primary goal is to
enable e�cient communication across programming languages. Apache Thrift comes
with an associated code generation mechanism for RPC. However, this mechanism
does not apply for calls that are not remote to a server or client. Consequently, we
cannot use this framework for our purpose.
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Chapter 3

Methodology

3.1 Overview

In this chapter, we study di↵erent methods for automated logging of function calls
and describe which method is best suited for each programming language.

In general, we need to implement the following three tasks to enable automated
logging. We denote it as automation tasks.

1. Retrieve all functions and context data. By context data, we mean the function
name, the argument names and types, and the return type. Additionally, we
want to be able to include or exclude functions from modules and packages.

2. For each function F we want to log, we create a new function F 0. This new
function F 0 calls the original function F and logs the call to the original function
F . We also log its context data along with the argument values and return value.

3. We create a new mechanism that works as follows. During the code’s execution,
whenever a function F is going to be called, the mechanism replaces that call
to F with a call to F 0.

The challenge lies in the combination of the second and third tasks, that is, to
properly propagate the enhanced function address throughout the original code while
being able to call the original function addresses.

Table 3.1 shows an overview of the best-suited methods for Java, Python, and Go.
We will explain these methods in the following sections.

Java Python Go
task 1 AOP pointcut traversal and code inspection AOP pointcut
task 2 AOP join point monkey patching AOP join point

and advice and advice
task 3 AOP compiler monkey patching and exec AOP compiler

Table 3.1: overview of methods and programming languages
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3.1.1 Intrusiveness

The aim is to apply the least intrusive method for each programming language. In
general, intrusiveness is hard to define. In this thesis, low intrusiveness means that
automated logging does not interfere with the program behavior. It also means that
users can use it without having to spend too much time modifying the source code
or the compiler. In other words, the more supported method for a programming
language is less intrusive.

Note that the di↵erence between monkey patching and aspect-oriented program-
ming is small. The gap from these methods to interpreter modification and program
transformation is significantly higher. Also note that monkey patching mainly is
intended for dynamic programming languages, such as Python. That means that
aspect-oriented programming can be less intrusive for compiled languages, such as
Java and Go. Overall, we aim to implement monkey patching or aspect-oriented
programming in the first place.

We illustrate an overview of the intrusiveness of the di↵erent methods in Fig-
ure 3.1. We explain these methods in the following sections.

aspect-oriented
programming

interpreter
modification

program
transformation

monkey
patching

 intrusiveness 

Figure 3.1: intrusiveness of methods

3.2 Logging Methods

3.2.1 Aspect-Oriented Programming

Aspect-oriented programming (AOP) is a programming paradigm to implement cross-
cutting concerns [37]. Cross-cutting concerns describe features that occur in many
di↵erent parts of a program. For instance, adding a log statement to all methods is
such a concern since it spans over all parts of the program. AOP allows to capture
cross-cutting concerns in a concise and modular way. An aspect describes such a con-
cern. As an advantage, we implement an aspect once at one single point rather than
all over the program. AOP avoids code duplication and enables e�cient implementa-
tion and maintenance. AOP requires a compiler that combines source code with the
aspects. However, AOP requires no changes in the original source code. Therefore,
we have a low degree of intrusiveness for this method. AOP also works if we do not
have the source code available. We illustrate how AOP works in a simple example
built on a question on Stack Overflow [34]. In this example, we have two methods
foo() and bar() where we want to apply a logging aspect.

void foo(int value){
doSomething(value);
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}
int bar(){

doSomethingElse();
}

The logging aspect prints a statement after any method call. Note that the expres-
sion any method is called is simplified and would be implemented as a regular
expression in a real implementation.

aspect logging{
after(any method is called):{

log.write("called method...");
}

}

The aspect compiler weaves the above aspect together with the source code and
produces a result like the following. For simplicity, we show the compiler’s output as
source code, but in reality, the compiler outputs bytecode.

void foo(int value){
doSomething(value);
log.write("called method...");

}
int bar(){

doSomethingElse();
log.write("called method...");

}

However, AOP can also introduce disadvantages. An Anti-pattern or action at
a distance describes a major issue of this programming paradigm. For instance,
it is not immediately obvious where part of a method’s functionality comes from
looking at the body of the method in the source code. In our case, we use one
single aspect, namely logging, where we augment methods with a log statement.
Otherwise, we do not interfere with the existing code. A developer working on a new
project might be wondering where these log entries come from, but the behavior is
not changed. Furthermore, there exist development tools that provide support to
implement aspects. An example for Eclipse can be found here [10].

3.2.2 Monkey Patching

Monkey patching is a method to modify program behavior of dynamic programming
languages at runtime. For instance, we can extend a function with a log statement.
We illustrate how monkey patching works in a simple example for Python. The
example is based on an article from a website [16]. In this example, we replace
the address of foo with monkey f. First monkey f calls the original foo and then
adds a logging statement. Calling foo after executing monkey patching then yields
the original foo augmented with the logging statement. In module monkey.py we
implement foo() as follows.

13



class A:
def foo(self):

print("foo() is being called")
}

Then we add a log statement to foo() at runtime in the following module.

import monkey
def monkey_f():

monkey.A.foo() # call original function
print("logging...")

monkey.A.foo = monkey_f # replace address
obj = monkey.A()
obj.foo()

The output from calling foo() is.
foo() is being called
logging...

The main advantage of monkey patching is that we can use the standard inter-
preter and implement this method solely with code modification. Therefore, monkey
patching has a low degree of intrusiveness. Furthermore, we have a high flexibility to
implement log statements. For example, we can insert the log statements before or
after a function call and modify the contextual information that we want to log. A
main disadvantage is that monkey patching mainly restricts to dynamic programming
languages. Moreover, there are similar disadvantages as in AOP regarding readability
and understandability of a program since the e↵ect is not immediately visible in the
source code. Especially, debugging is hard with monkey patching since we may not
get information where a bug happened. Despite monkey patching is used in practice,
we need substantial implementation and testing e↵ort to build an automated logging
framework. A restriction of monkey patching is that we need the source code to apply
it.

3.2.3 Interpreter Modification

Interpreter modification enables data manipulations. For our purpose, we can develop
our interpreter that adds log statements to every function call. More concretely, we
can take an existing interpreter and modify the interpreter such that it adds a log
statement to every function call. Interpreter modification is used in di↵erent academic
work. For instance, Wang et al. [36] propose a framework that uses a modified Python
interpreter to check that a program respects user policies and sensitive data. We
illustrate an overview in Figure 3.2. In this figure, we replace the interpreter with a
modified interpreter to achieve automated logging.

interpreter
adds logging outputsource

code

Figure 3.2: interpreter modification
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However, the intrusiveness of this method is high. A system that uses this method
needs to use a modified interpreter that is not widely used instead of a standard
interpreter. Also, this method is limited to interpreted languages.

3.2.4 Program Transformation

Program transformation is a general approach that takes a program and produces
another program. A compiler implements such a transformation. For instance, we
transform source code into bytecode. During this transformation, we can add log
statements to every function. When the original function is called after compilation,
then we automatically log the function call. For example, AspectJ is an implemen-
tation of a program transformation. We illustrate an overview in Figure 3.3. In
this figure, we replace the compiler with a modified compiler to achieve automated
logging.

compiler
adds logging

compiled
code

source
code output

Figure 3.3: program transformation

Similarly, as interpreter modification, the intrusiveness of this method is high since
we need to replace a standard compiler by a modified compiler that is not widely used.

3.3 Java

In this section, we explain the least intrusive implementation in Java to achieve auto-
mated logging of method calls. Java is an object-oriented and compiled programming
language. To study how AOP works for Java, we will briefly introduce the two-step
compiling process for Java. The Java compiler (Javac) takes source code (.java files)
and produces platform-independent bytecode (.class files). In a second step, the Java
virtual machine (JVM) compiles bytecode into machine code. This step includes the
use of a class loader, a bytecode verifier, and a JIT compiler. We visualize the process
in Figure 3.4.

Java
compiler
(Javac)

bytecode
(.class)

source code
(.java)

machine
code

Java virtual
machine

(JVM)

Figure 3.4: Java two step compilation

3.3.1 Method

We implement automated logging in Java with AOP. AOP is widely supported in
Java, whereas monkey patching is not supported since it is intended for interpreted
programming languages. Thus, AOP is the least intrusive method for Java.
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We can express logging as a cross-cutting concern and achieve all three automation
tasks in Section 3.1 with AOP. To explain our method, we introduce AspectJ [8].
AspectJ is the most prominent AOP implementation for Java and available as open-
source software. We express cross-cutting concerns through join points, pointcuts, and
advices. A join point is a candidate point where we can insert code. For example,
every call to a method is a join point. A pointcut defines at which join points we
want to insert code. We can formulate them by regular expressions. For example,
we can choose all public methods or only methods within a certain class or package.
Advices define the behavior we want to add to pointcuts.

First note that the syntax of a pointcut is call(package.class.method(arguments))
and we can exclude packages, classes, and methods by regular expressions. We define
the pointcuts as call(* *.*(..)), such that we catch all public and private method
calls.

Secondly, we define an advice that outputs logging information about a called
method. Java object thisJoinPoint of type JoinPoint provides static and dynamic
information about join points, such as the arguments of the join point. We can use
method getSignature() to get the method name and methods getParameterNames()
and getArgs() to get the argument names and values, respectively. Note that we
retrieve the return value and type after the method call.

Thirdly, we pass the existing program together with the aspects defined in the
previous steps to the AspectJ compiler. The compiler provides three di↵erent stages
to weave aspects together with target code. The most straightforward approach is
compile-time weaving. When we have the source code available, the AspectJ compiler
compiles from source code and produces woven class files as output. The JVM loads
the woven class files as standard Java classes. If the source code is not available, we
can use post-compile or binary weaving to weave existing class files. The last strategy,
load-time weaving, is similar to post-compile weaving but defers binary weaving until
the class loader loads a class file.

There are many di↵erent ways how to build an AspectJ project. Here we explain
it using Apache Maven (referred as Maven) [4] for build automation. First, we define
one of the three weaving stages in the project object model pom.xml. Then we build
and execute the program with the following two commands, respectively. mvn clean
install and mvn exec:java. Moreover, Eclipse provides the AspectJ Development
Tools (AJDT) [10], where we can create projects with aspects. We can also add
aspects to an existing Java project with the commands Configure and Convert to
AspectJProject.

Note that we choose the classical AspectJ notation, where we define the aspects
in a separate file. However, it is also possible to define the aspects using annotation-
based style. Further information for AspectJ setup is available here [9] and here [5].

Limitations

• We cannot limit the depth of function calls.

We implement the method in Autolog.aj and release the implementation publicly
on GitHub [13].
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3.4 Python

In this section, we explain the least intrusive implementation for Python to achieve au-
tomated logging of function calls. Python is an interpreted and dynamically strongly
typed language. Although we develop our solution for Python 3.6 and newer, it is
straightforward to extend the support to all Python 3 versions. Python distinguishes
between methods and functions, as methods are associated with a class, while func-
tions are not. For simplicity, we mean both functions and methods by writing simply
about functions, unless stated otherwise.

3.4.1 Method

Since Python is a dynamic programming language, we can apply monkey patching.
That means we can implement automated logging in the source code without chang-
ing the interpreter. Therefore, monkey patching is the least intrusive method that
we can apply for Python. We satisfy the three automation tasks in Section 3.1 by
implementing autolog.py, a framework for automated logging in Python.

In the first task, we need to list all functions. Therefore, we recursively traverse
a given list of modules. In this list, we define the modules that we want to log
automatically. The traversal continues until we have traversed all functions in the
modules or until we have reached a certain recursion depth. The recursion depth has
default value one, but we can configure it to other values. After completion of the
first step, we obtain a list of all functions and their signatures. To retrieve functions
from a module, we use the library inspect [29]. This library allows us to inspect
source code and get information about live objects such as modules, classes, methods,
and functions. With the following command, we retrieve a list of functions inside a
given module.

inspect.getmembers(module)

For a given function name, we retrieve the signature, also using the inspect module.

inspect.signature(function)

Note that we do not retrieve monkey functions to prevent reinspection. With monkey
functions, we mean the functions that we introduced in this method.

In the second task, we want to create a new function that calls the original function
and adds logging. Given the function signature and the argument and return values,
we produce a monkey patch f monkey, i.e., a new function definition that calls the
original function and logs the original function call. Note that we implement the
monkey patch as a string that we can execute as a program later.

In the third task, we want to replace the original functions with the attached
function. After the definition of f monkey from the previous task, we replace the
original function by the new function f monkey. To dynamically execute the string
as a program, we can use built-in function exec.

exec(string_f)

The implementation of autolog.py comes with the following workarounds and limi-
tations.
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Workarounds and limitations

• We do not log inner functions, also called nested functions. Inner functions are
functions defined within other functions. The reason is that module inspect
does not retrieve inner functions since they are invisible outside of its immedi-
ately enclosing function. However, if we want to log inner functions, we outline
a possible approach. Module inspect o↵ers a method getsource() to retrieve
source code. We can use this to retrieve the source code of function definitions.
For example, with library ast [28], we can traverse the source code of function
definitions recursively and retrieve inner functions. We show an example of
an inner function in Figure 3.5. Note that inner functions are able to access
variables of the enclosing scope.

• Similar to the previous limitation, we do not log lambda functions since inspect
does not retrieve them. If we want to retrieve lambda functions, we can use a
similar approach as for inner functions.

• We do not log functions that contain the following strings in the signature
because they are not executable.
<locals>, get kwargs, repr , and
argparse. ActionsContainer. get handler.

• We skip methods that have a non-executable signature, e.g., that contain an
invalid path. More formally, when an object’s built-in method repr(), which
should return an executable string of the object, returns something with an
invalid syntax (e.g., symbols <, >, ’, ", /, \, ...), we want to skip it.

def print_people_asc(people):
def comp(person1, person2):

return person1.age<person2.age
for p in sorted(people, comp):

print(p)

Figure 3.5: example of an inner function

We release the implementation of autolog.py publicly on GitHub [14].

3.5 Go

In this section, we explain the least intrusive method for Go to achieve automated
logging of function calls. Go, also known as Golang, is a statically typed and compiled
programming language. Go distinguishes between methods and functions. Although
Go has no classes, we can define methods on types. For simplicity, we mean both
functions and methods by writing simply about functions, unless stated otherwise.
Furthermore, Go has built-in support for multiple return values.

In Go, monkey patching and AOP are both more intrusive than for Java and
Python since none of them is currently widely supported. Nevertheless, we can achieve
automated logging of function calls with both methods, as we will describe in the next
two sections.
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3.5.1 First Method

In this section, we describe how to apply monkey patching. Note that even though
Go is a compiled language, it is possible to apply monkey patching. Recall the three
automation tasks for automated logging in Section 3.1.

In the first task, we want to list all functions and retrieve their fully qualified
name. We can use libraries operating over abstract syntax trees to traverse function
definitions and retrieve the function names. The according libraries in Go are go/ast,
go/parser, and go/token. To retrieve the argument and return types, we can use
module reflect [18]. However, we cannot retrieve the argument names of a function
with reflect. The reason for this is that position and type determine the arguments,
and the name is not essential. See a discussion on Stack Overflow on this topic [33].

In the second task, we want to create a new function that calls the original function
and adds logging. We describe an implementation using monkey patching. First of all,
it is not possible through regular language constructs. Nevertheless, we can achieve
monkey patching by rewriting the running executable at runtime and inserting a jump
to the function to call instead. Note that this approach can be unsafe in general.
GoMonkey [35] is a Go library providing a monkey patching API. We can retrieve
the argument values simply after the function is called by traversing the argument
list. Similarly, the function computes the return values, and we can add them to the
logging statement. We can replace functions using a GoMonkey API call.

monkey.Patch(<target function>, <replacement function>)

To replace an instance method inside a type, we need to add the type.

monkey.PatchInstanceMethod(<type>, <name>, <replacement>)

However, in the third task, we want to replace the original functions with the new
function. The main challenge is to call the original function within the new function.
To call the original function within the replacement, we use monkey.PatchGuard.

Limitations

• We cannot log argument names with the described approach. Further informa-
tion are available here [33].

3.5.2 Second Method

In this section, we briefly describe an AOP implementation to achieve automated
logging of function calls. AspectGo [2] provides an aspect-oriented framework for Go.
Note that there are several other projects on GitHub that provide aspect-oriented
frameworks for Go, e.g., [20]. To achieve the three automation tasks in Section 3.1,
we define a pointcut for all functions and methods. In the aspect, we implement the
logging behavior. Finally, we build the project with the AOP compiler to weave the
aspects into the methods.

Limitations

• We can only use a single aspect file. However, this is not relevant for our purpose
since we have only one aspect.

We release the implementation of a prototype publicly on GitHub [12].
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3.6 Deployment

3.6.1 Logging Structure

We provide the logs in a structured format. Independent of the logging structure, we
want to log the timestamp and the function name. For the arguments, we want to log
the types, names, and values. From the return statement, we want to log the value
and type. We provide the log data in two formats. First a machine-readable format
in JavaScript Object Notation (JSON) [23]. JSON enables automatic processing for,
e.g., machine learning algorithms. We show an example in Figure 3.6.

{
"time": 2019-09-20 09:20:19,
"name": "package.class.foo",
"arguments": [{

"type": "int",
"name": "a",
"value": 1

}, {
"type": "String",
"name": "b",
"value": "hello"

}],
"return_type": "string",
"return_value": "hello 1"

}

Figure 3.6: machine-readable JSON format

Secondly, for debugging and operations, we also implement a human-readable format
that contains the data in one line. We show an example in Figure 3.7.

"2019-09-20 09:20:19, name = package.class.foo(int, String),
arguments: (a = 1, b = hello), returns = hello 1 (String)"

Figure 3.7: human-readable logline format

To select the format, we implement two functions getLogLine() and getLogJson()
that return the format as a string.

3.6.2 Security

Logs can contain security-relevant information like user names, passwords, keys, and
many more. Logging function calls automatically can leak such information. To
address this concern, we provide an option to exclude libraries. For instance, we
can exclude libraries that contain user passwords or keys from automated logging.
Nevertheless, automated logging is still risky to use in production. Furthermore,
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the ability to exclude libraries can also help to reduce performance issues due to
automated logging.

Another concern is the use of another compiler or interpreter. Especially, when
this compiler is not widely used and regularly updated, the compiler might increase
the vulnerability of a system. E.g., due to missed security updates.

Depending on the intention of the log data, we could also consider to introduce
a mechanism that anonymizes user data when creating log statements to provide
privacy. For example, we could remove user names from the logs.
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Chapter 4

Experiments

4.1 Java

In this section, we describe our measurement setup and present our results in terms
of performance and storage.

4.1.1 Setup

To study the e↵ect of automated logging on performance and storage, we use an open-
source e-commerce application [1]. The application has a microservices architecture
and uses Kubernetes [19] for automatic deployment of containerized applications. For
container management, the application uses Docker [6]. We apply automated logging
to all methods of the orders service. The orders service has about 2000 lines of code
in Java. To apply automated logging, we extend the Apache Maven project object
model and add the following dependencies to the pom.xml file. The dependency on
the AspectJ runtime library aspectjrt.jar.

<dependency>
<groupId>org.aspectj</groupId>
<artifactId>aspectjrt</artifactId>
<version>1.8.9</version>

</dependency>

To introduce an advice to classes at load time, we also need to include aspectjweaver.jar.

<dependency>
<groupId>org.aspectj</groupId>
<artifactId>aspectjweaver</artifactId>
<version>1.8.9</version>

</dependency>

To produce log statements in JSON format, we also add the JSON.simple [24] library
to the dependencies.

<dependency>
<groupId>com.googlecode.json-simple</groupId>
<artifactId>json-simple</artifactId>
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<version>1.1.1</version>
</dependency>

Since we have the source code of the aspect and the application, we enable compile-
time weaving to weave aspects into the existing classes in the AspectJ compiler.

<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>aspectj-maven-plugin</artifactId>
<version>1.7</version>
<configuration>

<complianceLevel>1.8</complianceLevel>
<source>1.8</source>
<target>1.8</target>
<showWeaveInfo>true</showWeaveInfo>
<verbose>true</verbose>
<Xlint>ignore</Xlint>
<encoding>UTF-8 </encoding>

</configuration>
<executions>

<execution>
<goals>

<goal>compile</goal>
<goal>test-compile</goal>

</goals>
</execution>

</executions>
</plugin>

The dependencies are also available under Maven Central Repository [4]. Finally, we
add the logging aspect defined in Autolog.aj to the project. The AspectJ compiler
takes the aspects defined in Autolog.aj and produces woven class files as output.

4.1.2 Performance

We perform a load test to measure the impact of automated logging on the CPU
performance. The application provides tests in an open-source load testing tool,
Locust [25]. Locust supports simulation of end-users to run load tests distributed
over multiple machines. The tests perform a high number of requests to ensure the
requests run during the whole measuring time. We check this by measuring the
CPU usage at the beginning and after the measurement. If the CPU usage after the
measurement time is about as high as during the measurement, then we know that
requests are still running. The details about the execution and parameters of the
tests are in Table A.1.

We measure the CPU usage in two di↵erent settings for 70 minutes. First, with
full automated logging, where we log every method call within all packages. Secondly,
we measure the time without logging as a reference. To exclude the startup time from

23



the measurement, we compute the CPU load as follows. Where X denotes consumed
CPU time after ten and Y after 70 minutes.

CPU load =
X � Y

60

We show the measurement results in figure 4.1. Full logging increases the CPU
load from about 0.5 to 1% in comparison without logging. This is about a factor
of two. However, both CPU utilization’s are low. Note that the low numbers for
CPU utilization stem from the microservices architecture, where multiple services
run together, and orders is one of them.

Figure 4.1: CPU utilization

4.1.3 Storage

During the load test, as described previously, we also store and measure the output
in the form of logs to the console. In Table 4.1, we show the results of log output size
with and without logging. We observe that automated logging produces about 1’300
times the amount of output than without automated logging in our setup.

log size in MB
without automated logging 0.058

full logging 79.121

Table 4.1: log size during a run time of 70 minutes
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Countermeasures Since automated logging produces large log files, we propose
approaches to address this issue.

First of all, to reduce the required storage size, we can compress log files. For
example, we can use GNU Tar [17] for data compression.

tar -czvf fullLogging.tar.gz fullLogging.log
In our case, the size reduces by a factor of about 20 from 79 MB to 4 MB.

Secondly, we can use existing services and frameworks to store and process log
files. For example, IDrive [21] provides online data storage. The costs to store 2 TB
for one year are 52 USD. If we regularly analyze data, we can delete the logs after
analysis. For instance, we might store the data for one day and analyze them during
the night time. Based on the measurement of the application for 70 minutes, we
expect the following data size for automated logging for one day.

log size in one day = 79 MB · 24 · 60
70

= 1.6 GB

Note that the application for the measurements is a rather small application. For large
applications, however, we can estimate the storage based on this measurement. For
instance, e-commerce application eBay had a codebase of 50 million lines of code in
2011, according to this article on eBay [7]. The order application from the measured
e-commerce application has about 2000 lines of code. Since they are both e-commerce
applications, we estimate the data size for eBay by interpolation.

log size in one day = 1.6 GB · 5 · 10
7

3 · 103 = 26.67 TB

The costs to store 30 TB on IDrive for one year are 448 USD. We note that we want to
store the data for more than one day, the costs will multiply with the number of days.
As an alternative, Splunk [32] is a tool that provides comprehensive log management
with storing, searching, and analyzing for big data sets.

Thirdly, we can exclude libraries to reduce the data size. We can do this by
specifying paths in the source code that we do not want to log. Furthermore, we can
limit the depth of function calls. For example, we could only log function calls on the
first level.

4.2 Python

In this section, we describe our measurement setup and present our results in terms
of performance and storage.

4.2.1 Setup

We use Cartridge, an e-commerce shopping cart application [30] built on theDjango [22]
web framework. To activate automated logging, we add autolog.py to directory
project name. In the same directory, we activate automated logging in file manage.py
by adding the following code.

import django.core.management
from autolog import Autolog
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if __name__ == "__main__":
autolog = Autolog([django.core.management])
autolog.run()

We follow the instructions from the manual. First, to install Cartridge with the
required dependencies we run.

pip install -U cartridge or python setup.py install
Next, we create a new project and change to this project

mezzanine-project a cartridge project name
cd project name

Then we create some content for demonstration.
python3 manage.py createdb noinput

Finally, we run the application.
python3 manage.py runserver

Now we are able to browse to http://127.0.0.1:8000/admin and can login with
username admin and password default.

4.2.2 Performance

To perform a load test, we write a small script in Python that simulates user requests
to the Cartridge application. The script sends HTTP requests periodically to the web
application. The script is available in Appendix A.2. We set the rate of the requests
high, such that the CPU has a utilization between 50-80%. We note that we run this
setup in another environment than for Java. We run the script for 60 minutes and
measure the CPU utilization. To find the process ID (PID) we run.

ps aux | grep runserver
To measure the time we run. Note that time denotes the CPU utilization of a process.

ps -eo pid,time,etime,args | grep <PID>
We show the results in Table 4.2. Note that the format of time is mm:ss.

starttime 10 minutes minutes
without automated logging 00:02 07:11

automated logging 00:02 07:20

Table 4.2: CPU utilization time

4.2.3 Storage

During the load test, we store the output during 60 minutes into a file and compare
the resulting file sizes with automated logging and without automated logging. The
results are in Table 4.3.

log size
without automated logging 1 KB

automated logging 1.4 GB

Table 4.3: log size during 60 minutes
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Countermeasures to handle large log files, we can apply the same mechanisms as
described for Java.

4.3 Testing

How can we ensure that we log every function call? Ideally, we would formally
verify that the three automation tasks we described in Section 3.1. are correctly
implemented. This verification is left for future work, as developing the frameworks
required substantial e↵ort. We explain next how we implemented automated logging
for Java and Python and show how we could implement it for Go.

In Java, we log all method calls since an AspectJ pointcut retrieves all meth-
ods [11]. The AspectJ compiler weaves the aspects into all methods and produces
code with new methods that contain the original methods with added logging state-
ments. As a result, we log every method call in Java automatically.

In Python, however, we implemented our own framework. Therefore, we tested the
functionality empirically. We provide several test modules using di↵erent function and
method calls and external libraries. We tested various arguments and return types to
produce log statements. We provide test for numeric, boolean, string, and reference
inputs and check the corresponding log output.
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Chapter 5

Discussion

5.1 Conclusion

In this thesis, we studied four di↵erent methods to enable automated logging of
function calls for three major programming languages. We analyzed and implemented
di↵erent methods for automated logging. We showed for every programming language
the least intrusive method. In Java, we implemented automated logging with aspect-
oriented programming as the least intrusive method. In Python, we implemented
a framework that uses monkey patching to achieve automated logging. However,
there are some functions that we do not log. In Python, for example, we do not
log inner functions with our approach. However, we can achieve this by traversing
the source code of functions and retrieving inner function definitions. In Go, we
propose a method with monkey patching and aspect-oriented programming to achieve
automated logging. In the experiments, we measured the runtime and the storage for
Java. The measurements showed that the utilization is low with automated logging.
In our measurements, however, automated logging creates a significant raise of the
log size.

5.2 Future Work

The goal of this thesis is to log all function calls. Experiments showed that the
resulting logs are large. For future work, however, we could provide a mechanism
that distinguishes important function calls from others that we do not need to log.
This would reduce the required storage to process the log data and also enhance the
quality of features.

In Go, we could implement the two methods described in sections 3.5.1 and 3.5.2.
However, we would suggest to start with an aspect-oriented implementation since Go
is a compiled programming language. Nonetheless, it would be interesting to compare
the two implementations in terms of performance and storage. Also, we can apply
and implement methods for other programming languages.

In Python, the implemented framework does not log inner functions and lambda
functions. To address this, first of all, we would suggest to evaluate if these functions
contain valuable information to log. For example, we could perform a source code
analysis of a large software system, where we evaluate if inner functions contain im-
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portant information for our purpose. Alternatively, we could perform a questionnaire
survey among developers to find out more about the behavior of inner functions.
However, if we want to log them, we could implement the approach outlined in Sec-
tion 3.4.1.

For all three programming languages, we could evaluate automated logging on
larger software systems. In Section 4.1.3, we estimate the log size for larger software
systems. However, we could apply and evaluate automated logging to larger software
systems. We could measure the CPU performance and storage.

To enable user privacy, we could implement an anonymization mechanism for log
data, such that a user’s identity is hidden. This can be done after the generation of
the logs. For example, we could aim to achieve di↵erential privacy, such that it is not
observable if a user appears in the data or not.
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A.1 Java Experiment

We show the configuration parameters of the load test in Table A.1. We run the
experiments on a test server.

parameter value
replicas 8
clients 5’000’000

requests per client 10’000
hatch rate 50

Table A.1: Java load test parameters

The hatch rate describes the number of clients added per second. We set the
parameters in the configuration file.

deploy/kubernets/manifests/loadtest-dep.yaml

Next, we start a Minikube.

minikube start --memory 16284 --cpus 8

Then we create a resource from file.

kubectl create -f deploy/kubernetes/manifests/sock-shop-ns.yaml
-f deploy/kubernetes/manifests

We measure the time the application has used the CPU with the following com-
mand.

kubectl exec -it --namespace sock-shop orders-765f7dfb6b-hmq4r
-- ps -eo pid,comm,etime,time,args
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A.2 Python Experiment

In Figure A.1, we show the script to perform load tests. We perform ten di↵erent
HTTP requests to simulate user action periodically.

import requests
import time

url = 'http://127.0.0.1:8000/admin/login'

payload = {'username': 'admin', 'password': 'default'}
requests.post(url, data=payload)

sleeptime = 0.01
while True:

resp = requests.get('http://127.0.0.1:8000/admin/shop/')
time.sleep(sleeptime)
resp = requests.get('http://127.0.0.1:8000/admin/shop/product/')
time.sleep(sleeptime)
resp = requests.get('http://127.0.0.1:8000/admin/shop/product/1/change/')
time.sleep(sleeptime)
resp = requests.get('http://127.0.0.1:8000/admin/shop/productoption/')
time.sleep(sleeptime)
resp = requests.get('http://127.0.0.1:8000/admin/shop/discountcode/')
time.sleep(sleeptime)
resp = requests.get('http://127.0.0.1:8000/admin/shop/sale/')
time.sleep(sleeptime)
resp = requests.get('http://127.0.0.1:8000/admin/shop/sale/?o=3')
time.sleep(sleeptime)
resp = requests.get('http://127.0.0.1:8000/admin/shop/order/')
time.sleep(sleeptime)
resp = requests.get('http://127.0.0.1:8000/admin/media-library/browse/')
time.sleep(sleeptime)
resp = requests.get('http://127.0.0.1:8000/admin/media-library/browse/

?o=date&ot=desc&dir=gallery')
time.sleep(sleeptime)

Figure A.1: load test script
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