
Automating Website Registration for Studying GDPR Compliance
Karel Kubicek
ETH Zurich

Zurich, Switzerland
karel.kubicek@inf.ethz.ch

Jakob Merane
ETH Zurich

Zurich, Switzerland
jakob.merane@gess.ethz.ch

Ahmed Bouhoula
ETH Zurich

Zurich, Switzerland
ahmed.bouhoula@inf.ethz.ch

David Basin
ETH Zurich

Zurich, Switzerland
basin@inf.ethz.ch

660k websites
from Tranco 1M

25.7% found
registration form

23.6%
errors

50.7%
no form 5.2% of forms are insecure

22.8% of forms
submitted successfully

33.9k websites
send us emails

12 605 (37.2%) potentially
non-compliant senders

Automated crawl Automated registration ML-based violation detetection

Figure 1: Overview of steps of our study and results.

ABSTRACT
Investigating how websites use sensitive user data is an active re-
search area. However, research based on automated measurements
has been limited to those websites that do not require user authen-
tication. To overcome this limitation, we developed a crawler that
automates website registrations and newsletter subscriptions and
detects both security and privacy threats at scale.

We demonstrate our crawler’s capabilities by running it on 660k
websites. We use this to identify security and privacy threats and
to contextualize them within EU laws, namely the General Data
Protection Regulation and ePrivacy Directive. Our methods detect
private data collection over insecure HTTP connections and web-
sites sending emails with user-provided passwords. We are also the
first to apply machine learning to web forms, assessing violations
of marketing consent collection requirements. Overall, we find that
37.2% of websites send marketing emails without proper user con-
sent. This is mostly caused by websites failing both to verify and
store consent adequately. Additionally, 1.8% of websites share users’
email addresses with third parties without a transparent disclosure.

CCS CONCEPTS
• Security and privacy→ Privacy protections;Web applica-
tion security; • Applied computing→ Law.
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1 INTRODUCTION
Since the Internet’s beginnings, users have been exposed to security
and privacy abuses [11, 31]. Over the past decades, the advertis-
ing industry has also been in on the game, employing tracking
technologies [39] to gather user data. Many of these abuses are
financially motivated since users’ behavioral data has economic
value, for example, for targeted advertising.

To protect individuals, the European Union (EU ) has enacted
several laws regulating online data collection. The ePrivacy Direc-
tive mandates that the sending of marketing emails requires the
recipient’s prior consent. This consent is currently defined in the
General Data Privacy Regulation (GDPR). Both of these laws have
further requirements that pertain to the processing of personal data,
such as following secure communication practices.

Even though data protection authorities can impose heavy fines
for GDPR violations, the majority of studies analyzing EU websites’
compliance find significant levels of non-compliance. For example,
Libert [27] and Englehardt et al. [16] demonstrated that most web-
sites track users through cookies or fingerprinting, respectively.
Bouhoula et al. [6] showed that 65% of websites ignore users’ cookie
consent, and Linden et al. [28] found that almost half of websites’
privacy policies violate GDPR requirements.

These studies have focused solely on websites’ landing pages.
Urban et al. [37] showed that browsing randompages beyond a site’s
landing page increased the incidence of privacy-invasive practices
by 36%. However, their study was also limited to unauthenticated
sections of websites, a limitation that has been addressed by only
a few researchers. Englehardt et al. [15] and Mathur et al. [30]
studied email privacy by signing up for US e-commerce and political
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campaign newsletters, observing address sharing to third parties
and email tracking. Jonker et al. [21] utilized a public credential
database to log in to websites. However, their work was limited
to websites with available credentials in that database. Only the
study by Drakonakis et al. [14] addressed the registration process
in general, but it was successful on just 1.6% of the Alexa top 1M
websites, finding half of websites using insecure cookies.

Our work. We present a crawler that achieves a significantly
higher registration and newsletter sign-up rate than previous work;
in particular, it allows for the analysis of those parts of websites that
require prior user authentication, which have been understudied.
Utilizing this infrastructure, we examine the compliance of websites
with security and privacy requirements for the registration process
and analyze the emails received from these websites. The crawl
process and associated statistics are depicted in Fig. 1.

To examine websites’ compliance, we trained machine learning
(ML) models on datasets from Kubicek et al. [25], predicting the
legal properties of forms and the received emails. By processing
the form’s legal properties in decision trees, we can detect various
kinds of potential violations of consent to marketing emails. We are
able to identify instances where consent is likely not active, free,
specific, or given at all, thereby violating GDPR requirements.

We evaluate both crawler and violation detection on a crawl of
660k websites, registering or signing-up for newsletter in 5.9% of
them. Using an ML classification of email types, we evaluate the
verification process of email address control, known as double opt-
in, finding that 59.8% of websites fail to follow this process. Since
we generate a unique email address for each registered website,
we discovered that in 14.5% of the cases we received emails from
domains other than the domain where we registered. We develop
methods to evaluate the transparency of their disclosure practices,
finding 1.8% of websites with undeclared or hidden senders.

Contributions. We make the following key contributions. (1) We
develop a crawler that achieves more than double the rate of regis-
tration and newsletter sign-ups than prior work. Our crawler en-
ables the automated analysis of those parts of websites that require
prior user authentication, enabling privacy and security studies at
scale that were previously not possible.1 (2) We automate the detec-
tion of security and privacy violations using ML models that allow
the fully self-contained processing of crawled registration forms
and received emails. (3) We present new results on how tens of thou-
sands of websites potentially violate GDPR consent requirements
in the user registration process. Namely, 37.2%, which is 12 605, of
websites send marketing emails despite insufficient consent.

2 LEGAL BACKGROUND
During the registration process, users provide personal information
to websites, including their names, passwords, telephone numbers,
and email addresses. Within the EU, the collection and processing
of such information is regulated by the ePrivacy Directive and the
General Data Protection Regulation (GDPR). The ePrivacy Directive

1Our crawler is not publicly available as it can be misused for the Bomb attack [35].
However, interested researchers can request access via a form on the page with the
study’s supplementary materials https://karelkubicek.github.io/post/reg-www.

regulates electronic communication, mandating prior consent (an
opt-in regime, unlike in the US) for sending marketing emails.

The GDPR defines in Articles 4(11), 7, and Recital 32 the re-
quirements for obtaining consent: it must be freely given, specific,
informed, and unambiguous. For example, valid consent is consid-
ered to be given when users actively mark a checkbox that explicitly
asks for consent to receive marketing emails. For forms exclusively
dedicated to newsletter subscriptions, where the purpose of receiv-
ing marketing emails is implicit in the form’s wording, the inclusion
of a checkbox becomes redundant. Nevertheless, websites should
first send an activation email to verify the user’s possession of the
registered address through a double-opt-in procedure and store the
consent adequately [5].

Furthermore, Article 32 of the GDPR emphasizes the importance
of implementing robust measures to ensure the secure and private
processing of data. These requirements aim to prevent data breaches
involving email addresses or passwords, which have led to signifi-
cant fines [3, 20]. Collecting private data via insecure forms using
HTTP or transmitting user-provided passwords in unencrypted
emails may therefore violate Article 32(1)(a) of the GDPR [10].

3 CRAWLING INFRASTRUCTURE
We developed an infrastructure for crawling websites and automat-
ing user registration. For each website where the crawler registers,
we provide a unique email address for a simulated user. Our in-
frastructure then analyzes the received emails to evaluate how the
website uses the user’s email address.

3.1 Crawler
Websites vary significantly in both their appearance and imple-
mentation, primarily due to the flexibility of JavaScript and CSS.
Since all registration options must adhere to the same laws regard-
less of the technologies used, we focus on registration using email
addresses. We therefore do not attempt to register using single
sign-on, which was covered by other compliance studies [13].

Below we discuss the crawler’s steps. First, the crawler navi-
gates through websites to find pages containing a registration form,
which it fills out and submits. Afterwards, it checks the registration
state and finishes the double opt-in when this is requested by email.

3.1.1 Implementation. To simulate users’ browsing patterns, our
crawler utilizes a real browser orchestrated by Selenium. Since
existing frameworks such as OpenWPM [16] or webXray [27] are
not designed for the complex crawling that our task demands, we
do not use them. To represent the majority of web users, we crawl
websites using Chrome, but support Firefox as well.

To maximize the chances of successfully loading websites, we
employ techniques to evade bot detection, which we describe in
Appendix A.1. We have tested that our crawler is not flagged by
any major Content Delivery Network (CDN ), including Cloudflare,
Fastly, Amazon CloudFront, and Akamai. Our crawler successfully
loads 90.6% of websites, as opposed to 70% without bot evasion
techniques.

3.1.2 Navigation. After loading each website with a fresh cache,
our crawler determines the page’s language using the polyglot
Python package. If language detection fails, we rely on the <html>

https://karelkubicek.github.io/post/reg-www
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tag. If English is not the detected language, the crawler tries to
switch to the English version, if one exists. We keep browsing the
website regardless of the switch to English since we support the
majority of European languages (see Appendix A.2).

Keyword matching. The detection of a link or button to change
the language is based on matching keywords in the visible text,
the ‘alt’ attribute of <img> tag, or the URL. We curated phrases for
determining the purpose of page elements, such as a privacy policy
link or marketing consent checkbox. Native speakers translated
these phrases to all the supported languages. The curation was
guided empirically by example websites. The matching procedure
works as follows. First, we remove stop words from both the website
and the keyword phrase. Then we lemmatize both texts, using
the SpaCy [19] or lemmagen3 [22] lemmatizers, depending on the
language support. Next, we map characters with accents or Cyrillic
to lowercase ASCII counterparts. Finally, the processed keywords
and phrases are matched. This keyword matching approach is also
used for other navigation aspects, which are described below.

Navigating webpages. Our crawler uses a priority queue to deter-
mine the order of pages to visit of the site. The priority represents
the likelihood that a given link leads to a registration or a newslet-
ter form. We order the link categories starting with the highest
priority as follows: the registration page, login page, privacy policy
and terms and conditions, and others. Links within a category are
ordered by their matching score. The ‘other’ links are selected ran-
domly, preventing the crawler from getting stuck by, e.g., age walls
on adult websites. The privacy policy and terms are collected after
registration and are relevant for our legal evaluation.

The crawler is restricted to visiting at most twenty pages and
the registration page is typically reachable within the first five
pages. We allow the crawler to navigate beyond the original TLD+1
domain,2 but only for a single step, i.e., links found on external do-
mains are not considered for subsequent crawling. This allows regis-
tration on an affiliated website directly accessible from the original
site. However, it restricts the crawler from navigating away from the
original site and identifying unrelated registration forms. Moreover,
the keyword-matching algorithm penalizes external domains.

Page content classification. When we load a page, we classify it
according to the presence and type of a <form> tag.We apply the de-
cision tree from Fig. 5 to classify the form as registration, login,
subscription, contact, search, or other. We evaluated this pro-
cedure on a manually annotated dataset collected from 1000 ran-
domly selected English websites from the Tranco 1M,3 containing
426 forms. There were 12 contact, 32 login, 139 subscription,
163 registration, and 80 other forms. The procedure from Fig. 5
detected 74% of the registration and 94% of the subscription
forms, with an overall accuracy of 82%.

3.1.3 Form interaction. Once we detect a registration form, or
a subscription form when no registration form is found, we
interact with it. We first extract the entire subtree of the <form>
tag, which we process using the Beautiful Soup library. We use a
similar keyword-matching method as in Section 3.1.2 to detect the
2TLD+1 refers to the registered domain name preceding the top-level domain. For
example, in both bbc.co.uk and bbc.com, the string ‘bbc’ represents the TLD+1.
3From an older crawl using https://tranco-list.eu/list/89WV/1000000.

type of input fields. We search for matches in the corresponding
<label> tag and visible text, and in attributes such as autocomplete,
type, label, placeholder, and value.

Once we determine the input type, we check which input fields
must be filled, as indicated by the presence of the ‘required’ at-
tribute, an ‘∗,’ or a bold label. Then we fill all the required inputs
by simulating typing, ensuring that our fictitious credentials seem
plausible. Most importantly, we generate a unique email address
for every website.

Checkboxes and form submission. We interact with every required
checkbox and <select> tag. Once the form is filled, we submit it
using any detected submission button or by simulating pressing
the Enter key. After submission, we look for a redirect or a change
in the website content to detect the registration state. We compute
the difference in the website’s visible content and the form code to
distinguish the following outcomes: the text differs and contains
keywords indicating a ‘successful’ or ‘failed’ registration; the form
is unchanged, usually indicating a ‘failed’ registration; the form
changes after a redirect, indicating a multi-step registration; and
none of the above applies, which we denote as an ‘unknown’ state.

If the registration failed but the same form is still present, we
try filling in the credentials again, but this time we confirm all
checkboxes. This increases the probability that a required checkbox
like “I agree with the terms and conditions” is checked. However, it
also increases the probability of consenting to sending marketing
emails, which could be detrimental to the objective of our consent
study.4 Then the form is submitted again, possiblymany timeswhen
the form changes and our heuristic detects a multi-step registration.

CAPTCHA solving. During any of the crawling steps, we might
encounter a CAPTCHA. This usually happens during registration
or when loading an index page is intercepted by CloudFlare or a
similar DDoS-mitigation service. The crawler observes the type
of CAPTCHA by the JavaScript that loads it. For reCAPTCHA or
hCAPTCHA, we load a template substitute JavaScript that prevents
crashes due to website changes of the CAPTCHA invocation. Image
CAPTCHAs are detected by keywords directly in the forms. We use
an external service that solves CAPTCHA using humans. A third
of crawled websites use CAPTCHAs: 75% of them ReCaptcha v2,
20% ReCaptcha v3, 2% hCaptcha, and 3% image CAPTCHA.

Self-hosted mailserver. We self-host generated email addresses
at sybilmail.de, configured to only receive emails using the Mail
Delivery Agent implemented with the Python Maildir library.

3.2 Registration confirmation
Once the crawler determines that the registration state is either
‘successful’ or ‘unknown,’ it waits for a confirmation email. As
shown in [25], only 85% of websites send emails to registered users
and, of those, 59% send double-opt-in emails requiring activation.
If we receive an activation email, we extract the activation link
or code. The crawler visits the activation link or inserts the code
into the open registration. For computational reasons, we wait for
activation mail only for a limited period. We discuss this period
and issues that we faced with confirmations in Appendix A.4.
4Checking all checkboxes hinders detecting the ‘marketing email despite user did not
consent’ violations.

https://tranco-list.eu/list/89WV/1000000
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3.3 Deployment
We evaluated our crawler by visiting the June 2022 Tranco 1M
list [26], available at https://tranco-list.eu/list/82Q3V. We selected
the Tranco list to enable an accurate comparison with prior work
that utilizes a similar crawling list. However, Ruth et al. [34] have
observed that Tranco represents less accurately users’ browsing
patterns than the Chrome UX Report (CrUX ) list. Hence we also
evaluate the subset of Tranco that is present in the CrUX list. Unfor-
tunately, due to a processing error, we crawled one million websites
that were uniformly randomly sampled with replacement, rather
than crawling all the websites. For this reason, our results are only
based on 660 202 unique domains, corresponding to the first crawl.

The crawl was conducted from June to September 2022, averag-
ing 10k websites per day on a server equipped with four Intel Xeon
E7-8870 CPUs. We ran 60 Chrome browsers in parallel each within
a separate docker container, using a freshly launched browser for
every website. We used 12 IP addresses provided by the German Re-
search Network, ensuring that the traffic originates in the EU. This,
together with an EU address of our fictitious credentials, should
indicate for the website that EU privacy laws may apply, which we
further discuss in Section 7.

The crawler collected evidence in the form of HTML code from
the index and registration pages, as well as extracted text from the
privacy policy and terms and conditions. Additionally, we obtained
screenshots of each step taken during registration and recorded
all the observed cookies. Finally, the crawler collected information
regarding the registration status, which we describe below.

3.4 Crawling results
From the 660 202websites, 504 509websiteswere successfully loaded
in a supported language. Among the loaded websites, our crawler
detected a registration or subscription form on 25.7% (169 765)
of websites. Furthermore, our crawler estimated the success rate of
form submissions defined in Section 3.1.3. The estimation indicates
that 30.2% of form interactions were successful (51 290), 38.4% failed
(65 220), and 31.4% resulted in an undefined state (53 255). The de-
tection of the form submission’s state is prone to false positives.
See the manual investigation of the crawler registration state in
[29, Sec. 6.4] or in the extended version of this study available from
https://karelkubicek.github.io/post/reg-www. Further observations
from the manual analysis are presented in Appendix B.

We also analyze the results based on whether the websites are
in the CrUX list. Note that Tranco 1M and CrUX have only a 51.9%
overlap. The crawl was significantly more successful for the CrUX
websites. Specifically, 90.6% of the websites present in both lists
were successfully loaded, in contrast with 65.3% for non-CrUX
websites. Among the websites in the CrUX list, registration was
detected as successful in 11.7% of cases (3.9% for non-CrUX web-
sites). Our list choice supports a comparison with [14], relying on
the DNS-based Alexa list with domains like WindowsUpdate.com
without HTTP(S) endpoint. In the future, we recommend crawling
the CrUX list to prevent unnecessary computations.

3.5 Ethical considerations
We have identified the following three risks of our study. 1) Legal
risks arising from crawling: we reviewed various legal regimes and

concluded that our research activities do not violate laws related to
fraud, trespass, or breach of contract. This is underpinned by the fact
that our intentions are the pursuit of good-faith privacy research.
2) Risks to website owners: our single crawl negligibly impacts each
individual website’s capacity. Moreover, the registration rarely re-
sults in a manual action by website owners, as the vast majority
of emails are automated. In Section 5, we present only aggregated
results, preventing harm by wrongful accusation of individual web-
sites for privacy violations. For that reason, we refrain from publicly
disclosing our dataset of identified violations, except in cases where
parties explicitly provide consent to adhere to the same ethical
standards we uphold. 3) Risks to CAPTCHA solvers: we contracted
with a third-party CAPTCHA solving service. Given the substantial
prevalence of CAPTCHAs, accounting for one-third of our success-
ful registrations, and their particular prevalence on higher-profit
services, omitting CAPTCHA solving would introduce a significant
bias. We carefully compared several providers, excluding those with
evidently poor working conditions. Subsequently, we discussed the
outsourcing with our university’s legal department. Furthermore,
we implemented multiple measures to avoid bot detection and, con-
sequently, the need to solve CAPTCHAs. In follow-up research, we
transitioned to CAPTCHA solving by research assistants employed
at our university for email confirmations.

4 CLASSIFYING LEGAL PROPERTIES
Kubicek et al. [25] defined 21 legal properties relevant to consent
compliance and annotated a dataset with them. In this section,
we automate the prediction of these properties. Using the dataset
from [25], we train two types of ML models: for emails and forms.
For each type of model, we describe the feature engineering step,
how models are trained, and the results.

4.1 Email features
The training dataset consists of 5725 mostly German and English
emails. To reduce the complexity of dealing with multiple languages
and to utilize all the training samples, we translate the subjects
and bodies into English using LibreTranslate. From each translated
email, we further process the headers, subject, and body.

4.1.1 Headers. Email headers constitute a set of key-value string
pairs, such as ‘Date,’ ‘Reply-To,’ or ‘List-Unsubscribe.’ While several
headers are standardized, there are many, often prefixed with ‘X-,’
that are custom to specific email servers. We define the supported
keys as the set of all header keys in the training dataset. This resulted
in 76 headers without the ‘X-’ prefix and 488 headers with it. For
each email, we denote whether there is an entry for a given key,
whether it contains an email, URL, other text, or whether it is empty.

4.1.2 Subject. The translated subjects are processed with a TF-
IDF encoding [1] that we fit to the training dataset, as well as a
universal sentence encoder [7]. This pretrained transformer model
maps sentences to an embedding in R512.

4.1.3 Body. We extract both the TF-IDF encoding of the translated
body and several manually-defined numeric features. These features
include the number of characters or sentences of the email text,
number of URLs, images, and links.

https://tranco-list.eu/list/82Q3V
https://karelkubicek.github.io/post/reg-www
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4.2 Training ML models for emails
Given that our features correspond to tabular data, we use the
XGBoost model [9]. XGBoost is well-suited as it outperforms other
training algorithms for datasets with few annotated samples but
high dimensionality of the feature space.

We train the model using an established ML pipeline. We per-
form a stratified split of the dataset dedicating 75% for training,
saving 25% of the unseen data for validation. We adjust for class-
imbalance by sample-weighting. The models optimize the weighted
‘multi:softmax’ metric for multi-class and ‘binary:logistic’ for bi-
nary classification. All reported results are based on four-fold cross-
validation. Given data scarcity, we skip hyperparameter tuning,
which would require a further data split, and we use the default
XGBoost hyperparameters.

We trained models that predict two distinct legal properties of
emails. Our first model predicts whether an email is a marketing
email (i.e., newsletters, notifications promoting service monetiza-
tion, and surveys), a servicing double-opt-in email, or another kind
of servicing email (confirmation emails or service updates). Our
second model detects whether an email contains a method to un-
subscribe, which we evaluate only on marketing emails.

In the last three rows of Table 1, we present the performance
the mail-type model. This model achieves 97.7% balanced accu-
racy, while in the simplified task of deciding only whether email is
marketing or servicing (aggregating double opt-ins with confirma-
tions and legal updates), the balanced accuracy increases to 99.2%.
The same balanced accuracy of 99.2% is achieved by the model
predicting the presence of the unsubscribe options.

4.3 Form features
To transform forms of unlimited length to tabular features, we
aggregate the form inputs by the crawler’s keyword-based element
classification.We group semantically similar inputs, such as the first
and last name, full name, and username, see Appendix A.3 for details.
We also reduce the complexity by excluding inputs irrelevant to
legal classification, such as CAPTCHAs. From all inputs, we extract
whether they are required or optional, and from checkboxes also
their default values. We concatenate texts, such as corresponding
labels, and translate them to English. Finally, we include the form
type (registration or subscription) as a categorical feature.

We process the form texts similarly as emails. Note that checkbox
labels often consist of complex, nuanced statements, such as “I don’t
want to receive special offers about [company name] products.” To
better capture the meaning of these statements, we extract both
sentence embeddings and TF-IDF representations with a limit of
500 words. However, for other form inputs, which tend to have
shorter labels like “Your email,” we skip sentence embeddings and
only use TF-IDF with a limit of 50 words.

The feature extraction produces 5839 tabular features: 69 numer-
ical features about forms’ input fields, 3154 TF-IDF columns, and
five sequences of R512 sentence embeddings.

4.4 Training ML models for forms
Similarly, as with the email classification, we trained an XGBoost
model for each of the 21 binary legal properties annotated by [25].
Note that the training dataset consists of only 668 annotated forms.

Table 1: Performance of legal properties models. ‘Determin-
istic’ model stands for the crawler’s prediction.

Property Model F1 Precision Recall Support

Deterministic 77.58% 80.43% 76.87%Marketing consent XGBoost 82.33% 82.88% 82.08% 41.92%

Deterministic 68.06% 64.95% 74.65%Marketing purpose XGBoost 63.15% 61.71% 66.21% 7.04%

Deterministic 79.01% 83.23% 77.33%Marketing checkbox present XGBoost 81.67% 82.95% 81.04% 35.18%

Deterministic 71.74% 73.26% 70.44%Marketing checkbox pre-checked XGBoost 57.66% 57.58% 58.43% 5.84%

Deterministic 55.67% 59.67% 54.22%Marketing checkbox forced XGBoost 58.94% 59.84% 58.38% 3.14%

Deterministic 71.16% 71.48% 70.86%Tying policy and terms checkboxes XGBoost 77.71% 78.10% 77.92% 16.77%

Deterministic 51.84% 51.51% 64.49%Tying all checkboxes XGBoost 49.70% 49.70% 49.70% 0.45%

Forced policy XGBoost 74.16% 74.34% 74.07% 26.95%
Forced terms XGBoost 74.05% 80.28% 70.99% 5.24%
Forced policy and terms XGBoost 72.55% 72.16% 73.25% 18.41%
Double-opt-in email XGBoost 94.55% 94.16% 94.95% 12.45%
Single-opt-in email XGBoost 89.65% 89.89% 89.41% 9.73%
Marketing email XGBoost 99.11% 99.15% 99.08% 77.82%

To address this data scarcity, we also conducted experiments using
the Tabnet model [2], a neural network model optimized for tabular
data. One notable advantage of Tabnet over XGBoost is its ability
to perform unsupervised pretraining on unlabeled data, allowing
it to capture the distribution of classified data. For the pretraining
phase, we provided the extracted features of 30k websites where
the crawler detected registration or subscription forms.

Table 1 compares the results of XGBoost with predictions based
solely on the crawler’s keyword-based classification of form con-
tent. However, the crawler’s prediction is unavailable for some
legal properties, so for space reasons we skip such rows together
with Tabnet as its performance is aligned with that of XGBoost.
The table provides a summary of the F1 score, precision, and recall,
while the last column indicates the percentage of positive sam-
ples in the training dataset. Note that the overall performance is
highly dependent on the number of positive samples, making scarce
properties insufficient for making legal judgments. To mitigate the
risk of falsely predicting a privacy violation, we combine the ML
predictions with the crawler’s keyword-based deterministic predic-
tion. When the presence of a legal property implies a violation, we
combine predictions using AND and conversely when it implies
compliance, we use OR. We further reduce false positives by con-
ditioning predictions when possible, such as ‘marketing checkbox
forced’ requires ‘marketing checkbox present’ in the first place.

5 POTENTIAL VIOLATION DETECTION
In this section, we describe our analysis of security threats and
potential privacy violations concerning consent in forms and emails.
For each method, we give context regarding related work and the
EU privacy laws – the GDPR and the ePrivacy Directive.

5.1 Security violations
Using our automated methods, we investigate websites’ adherence
to security best practices in private data protection as mandated by
Article 32 of the GDPR. We focus on the personal information col-
lection through user registration and newsletter sign-up processes.
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Figure 2: Security threats of registration to websites.

We present our findings in Fig. 2. We detect 5.2% of websites
collecting sensitive information through forms from unsecured
HTTP websites, failing to ensure the personal data confidentiality
required by the GDPR. Utz et al. [38] found such violations on
only 2.85% of websites. The difference might stem from our better
selection of forms for inspection and the difference in the lists
crawled. We also observed that 1.8% of websites, when sending
us emails, included the user-provided password in plaintext. The
data protection authority of Baden-Württemberg (Germany) [3]
considers this a violation of Art. 32 of the GDPR. A similar incidence
of 2.3% was observed in the manual study of Kubicek et al. [25].

5.2 Violations of marketing consent in forms
Our detection of potential violations of marketing consent in forms
is based on the predicted legal properties used in the decision proce-
dures defined by Kubicek et al. [25, Figs. 6 and 7]. Due to space con-
straints, in Fig. 3 we only report the aggregated results using these
procedures. Note that the baseline of reported incidence is 33 899 of
websites that send any email. According to Kubicek et al. [25], only
85% of registrations result in the website sending any email, and this
factor should be taken into account when interpreting our results.

Over 43% of registrations resulted in websites that never sent us
any marketing emails, potentially caused by issues with account
activation (see Appendix A.4) and up to 44% of the marketing emails
we received resulted from newsletter subscriptions, reflecting the
crawler’s higher success rate with subscription forms compared
to registration forms. We found that at least 3.6% of senders
violated the opt-in requirement of the ePrivacy Directive by send-
ing marketing emails without any indication of marketing email
consent. At least 4.3% of websites then violate the GDPR consent
requirements by not including a marketing checkbox, pre-checking
the checkbox by default, or tying the checkbox with privacy pol-
icy or terms. In 2.0% cases, we received a marketing email despite
rejecting consent, where the checkbox was neither pre-checked
nor checked by the crawler. The crawler checked all checkboxes
on additional 450 (1.3%) of websites.

5.3 Email privacy violations
When users register, websites should verify the ownership of the
registered email address through a double-opt-in process. Without
this verification, our crawler could be used to subscribe arbitrarily
selected email addresses to thousands of newsletters without the
owners’ consent, resulting in the Bomb attack [35]. The double-
opt-in process also ensures that the website retains a clear record
of consent. Using the ML model from Section 4.2, we classify the
first email we receive from the website. The results presented in
Fig. 4a show that 42.4% of websites adhere to the double-opt-in

0% 2% 4%

Email despite user
did not consent

Email after
invalid consent

Email despite
no opt-in

2.0%
(689/33899)

4.3%
(1474/33899)

3.6%
(1204/33899)

Figure 3: Portion of senders that violate at least one market-
ing consent requirement. This figure is based on the decision
procedures from [25, Figs. 6 and 7].

requirements and 24.8% of websites only send a confirmation email,
not conforming to the double-opt-in practice. The remaining 32.8%
of websites immediately send marketing emails to users.

5.3.1 Email sharing. To track how websites use email addresses,
each registration was performed with a unique email address. De-
tecting when the website shares the email address to third par-
ties, however, poses a challenge. For example, facebook.com sends
emails from facebookmail.com.We developed the following heuris-
tic to address this issue.

For a given registration, we extract a set of TLD+1 domains from
which we receive emails. We then match these domains to other
domains found in various sources documenting how the website
declares this domain. We consider that domains match if the longest
common subsequence between two domains is at least half of the
shorter domain. This threshold of 0.5 was determined by empirical
evaluation of a set of 200 domain matches, resulting in an accuracy
of 91%with 2.5% of false negatives (wrongly predicting that domains
are not similar) and 7.5% of false positives.

For each sender domain, we identify how the website discloses
it. We take the first of the following outcomes, ordered from the
most to the least disclosed. (1) The domain name where we regis-
tered and any domains that are similar. (2) The domain of the first
received email. (3) Any common email host (e.g., gmail.com) if the
name preceding the @ symbol is similar to the registration domain.
(4) Any domain declared on the registration page is marked as ‘In
form.’ (5) Any common host that was not matched previously as
‘Dis. email host.’ (6) Domains in the privacy policy and terms and
conditions, are marked as ‘In policy/terms.’ (7) If all these checks
fail, the domain is marked as ‘Undeclared.’ We list other methods
we considered for third-party sharing detection in Appendix D.

If there are at least two senders and one of them is marked as
‘dissimilar email host’ or higher in the ordering above, we consider
the website to be sharing the email address without a proper dis-
closure. As shown in Fig. 4b, 1.6% of our email addresses received
emails from undeclared domains, including one website that shared
our email address to 56 undeclared domains. Additionally, 0.1% of
websites sent emails from domains that were only declared in the
policy or terms, which are rarely read [4]. Finally, 1.0% of senders
are correctly defined directly in the form, and the remaining web-
sites sending emails do so from expected domains. The prevalence
of this violation is comparable to results by Kubicek et al. [25].
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(a) Email opt-in classification of
the first received email.
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(b) Email sharing classification.

Figure 4: Potential violations in emails.

6 MANUAL EVALUATION
To evaluate the trustworthiness of our automated methods in a
real-world scenario, we manually analyzed a random sample of 100
websites that sent us at least one email.5 We selected this sample for
two reasons. First, it maximizes the number of websites for which
our crawler has successfully filled out the form. Second, websites
that sent us emails serve as a baseline for reporting violations.
Our crawler submitted one contact, 54 subscription, and 45
registration forms. Our crawler misclassified six subscription
forms as registration forms and one registration and contact
form as subscription forms.

Out of the registrations or newsletter sign-ups, our crawler was
unable to complete 25 double-opt-in procedures. Note that our eval-
uation of failed double opt-ins is conservative since we classified
any lack of email confirmation as a failure, regardless of whether the
website actually sends such an email. Nonetheless, considering that
almost half of the websites use double opt-in, email confirmation
should be improved in future work. Additionally, two registrations
were incomplete, but the websites reminded us to finish the reg-
istration—a behavior that was studied by Senol et al. [36]. Finally,
the crawler successfully submitted the remaining 73 forms.

We examined the email opt-in procedure and found that the
first emails from 83 websites were correctly classified. The model
misclassified that the first email was for marketing rather than
single or double opt-in in nine and five cases, respectively. For a
subsequent study described in Appendix C, we completed double
opt-ins manually, which allowed us to inspect 110k labeled emails,
which we summarize in Fig. 10b. The comparison with Fig. 10a
suggests that we tend to classify emails more rarely to be marketing
compared to the annotators of the dataset we used for training [25].
As future work, we will incorporate the larger annotated dataset for
training to improve the mail-type model’s robustness. For insecure
registration and passwords sent via email, the sample had two
violations each, and their prediction was accurate. We expect false
positives to occur only if we misclassify a form.

We evaluated third-party sharing on a sample of 50 websites
sending emails from multiple different domains. This sample con-
tained 13 violations. Our method achieved a recall of 85% (two short
sender domains were falsely detected on the registration page) and
a precision of 79% (three senders used multiple domains belonging
to the same company, which can be observed only from the email
content).

We also evaluated 40 randomly selected instances for each type
of form interface violations. For ‘email despite no opt-in,’ 17 out of
5A complementary sample of websites where our crawler attempted to register but
received no emails is analyzed in Appendix B.1. The analysis suggests only a limited
bias induced by our crawler and that the registration rate is higher than reported.

the 40 cases were confirmed as violations. The ‘email after invalid
consent’ type had 12 correctly identified violations. For ‘email de-
spite user did not consent,’ 12 cases were correct, with false positives
largely due to 16 pre-checked checkboxes, constituting other viola-
tion, and five instances where the crawler checked the checkbox.
The false positives of all methods were mainly caused by misclas-
sifying the form, namely subscription for registration in 49
cases or contact for registration in four cases. The findings sug-
gest that particularly the form interface violations are susceptible to
false positives, indicating areas for improvement already underway
in our follow-up studies. The analysis focused on label accuracy
over a comprehensive review, meaning some confirmed violations
might not be regarded as such due to other factors.

In conclusion, while our results reasonably represent the land-
scape of violations, individual violations are sometimes incorrect.
Therefore, individual violations should not be blindly trusted with-
out inspecting the evidence we collected. Still, using our detection
methods as a tool for privacy enforcement can considerably stream-
line the detection of violations, as it presents enforcement agencies
with a set of potential violations alongside the evidence needed to
manually check whether the violation actually took place.

7 LIMITATIONS
Bias. Our study is susceptible to a selection bias introduced by

the crawler. As explained in Section 6, our crawler exhibits greater
success when signing up for simple websites and forms such as
newsletters compared to complex registrations. However, form
complexity and website compliance may be correlated. Hence, our
results may not be representative of the entire population of web-
sites visited by users.

To mitigate this limitation, we propose involving real users in
part of the process. For example, semi-automated techniques can
be employed for email confirmation, ensuring that humans accu-
rately handle the various double-opt-in processes used by websites.
Additionally, violation detection can be similarly inspected.

Accuracy. All of our findings are prone tomisclassification. Hence
all violations should be regarded as potential violations. In particu-
lar, in cases where our methods exhibit low precision in identifying
violations, caution should be exercised when using the results for
enforcement purposes. We propose two complementary solutions
to address this. First, one can carefully examine the evidence of
the violation in the form of screenshots and website source code,
similarly to our approach in Section 6. Moreover, a larger training
dataset can be constructed by rectifying misclassified violations
and adjusting the corresponding legal labels, thereby improving our
models in the future. This is particularly crucial for properties with
few positive samples, such as the pre-checked marketing checkbox.

Finally, our methods are not a complete audit as there may be
additional unaddressed violations. Detecting email sharing might
require a longer observation period to capture incriminating events.

Adversarial websites. Website operators couldmodify their forms,
for example by including input fields or text labels invisible to
users, to evade our violation detection methods, as was proposed
by Zhao et al. [40, 41]. We assume that websites do not do this, since
we have not published our violation detection models, making it
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difficult for websites to exploit their weaknesses to evade detection.
Moreover, the classification also depends on crawler’s keyword-
based prediction.

Territorial applicability of EU privacy laws. Although we access
the websites from Germany and register a user located in the same
country, note that websites with only a few EU visitors may not be
obligated to complywith EU regulations. To ensure the enforcement
of EU law, future studies can restrict their analysis to lists that
are ranking websites by the origin of visitors, such as CrUX or
Similarweb. In Section 3.4, we found that the registration rate is
favorable when crawling such lists. By utilizing these lists and
considering additional factors, like the website’s language, one can
estimate whether a website is targeting users located in the EU and,
consequently, whether their privacy rights must be respected.

8 RELATEDWORK
Drakonakis et al. [14] automated the registration process to detect
insecurely configured cookies on over half of the websites. Their
crawler registered successfully on 1.6% of Alexa top 1M websites,
while our crawler achieved registrations on 5.9% of websites from
the comparable Tranco list, although nearly half of our registrations
can be attributed to newsletter sign-ups. In contrast, Drakonakis
et al.’s method also relies on Single Sign-On (SSO) as part of their
procedure, which is unsuitable for our mail violation detection re-
quiring a unique email address for each registration. We attempted
to re-evaluate their results, without success as their code is depen-
dent on an outdated Google’s SSO API. Zhou et al. [42] registers and
inspect vulnerabilities specifically on websites with the Facebook
SSO, making their work even less aligned with our study objectives.

A similar crawler was proposed by Chatzimpyrros et al. [8]. They
claim that their crawler successfully registered on 26.4% of websites,
which accounts for 80% of websites with any form. However, their
claims are questionable. First, they regard login as registration
forms. Second, they consider form submission as a successful regis-
tration. Finally, they do not report the number of senders, except for
0.03% of websites sending emails without crawler’s form submis-
sion. Senol et al. [36] similarly investigated the detection of private
data exfiltration prior to form submission. They found that nearly
3% of websites extract private inputs, such as email addresses.

Jonker et al. [21] developed a crawler that logs into websites
using a legitimate crowd-sourced database of credentials called
BugMeNot. They were able to login to 14.3% of approximately 50k
websites present in this database, but they do not present any pri-
vacy or security results. While Jonker et al.’s approach is more
effective in logging-in than our crawler, it is limited by the size of
the BugMeNot database. Consequently, their approach is unsuitable
for detecting violations during the registration process or in emails.

Englehardt et al. [15] automated newsletter subscription, which
was successful on 5.7% of US e-commerce websites. They focused
on identifying the presence of email tracking and email sharing,
revealing third-party sharing by 30% of websites. Mathur et al. [30]
studied the 2020 US political campaign with similar observations.
In contrast, our research uncovered email address sharing by only
1.8% of the senders. This discrepancy suggests that privacy regula-
tions such as the GDPR foster the protection of privacy, particularly

in contrast to jurisdictions that lack similar regulations. Addition-
ally, our crawler was more successful in subscribing to newsletters
compared to these works.

Oh et al. [33] studied how website forms meet the GDPR consent
requirements, specifying four conditions on consent with privacy
policies and terms, including consent presence and tying of check-
boxes. We focus on consent to marketing emails, and our methods
involve observing the actual data use that violates the consent
requirements. Hasan Mansur et al. [18] automated dark pattern
detection across websites and apps, including the identification of
pre-checked boxes as a default choice. Their findings also under-
score the difficulty of detecting this type of violation. A comparable
yet manual study was carried out by Gunawan et al. [17].

Consent compliance was thoroughly studied for subpages of
websites that do not require prior user authentication. The focus
of researchers lay mostly on cookie pop-ups and the consented
privacy policies. We refer to a meta-study by Kretschmer et al. [24]
that lists and compares publications with these two focal points.

9 CONCLUSIONS AND FUTUREWORK
We have developed a crawler capable of conducting large-scale
studies on the security and privacy of website registration. Our
crawler more than doubles successful registrations of prior work,
signing up to 5.9% of 660k websites. This led to the collection of over
2 million emails. Using this crawler, we were able to detect a wide
range of security and privacy threats, fully automating previous
manual studies and scaling them by orders of magnitude. To do so,
we automated the prediction of complex legal properties of forms
and emails using ML. We observed 12 605 websites, which is 37.2%
of the websites sending us emails, containing at least one potential
violation, or sending a marketing email as the first email.

Our automation fosters various kinds of research. First, our
crawler enables future work to analyze the security and privacy of
authenticated sections, reflecting how real users browse websites.
Second, the option to collect a large-scale dataset of forms and
emails can foster research on communication practices. Examples
include analyzing whether websites respect the unsubscribe action
or studying whether tracking by third-parties is even more present
in those parts of websites requiring authentication.

In future work, we will explore using our infrastructure for
regulatory enforcement. Namely, by extending our training datasets,
such as the annotation of emails of the subsequent crawl, we plan to
enhance the predictive capabilities of our machine learning models
in detecting violations. These enhanced methods can potentially
help understaffed and under-resourced data protection authorities
by pre-filtering non-compliant websites and collecting supporting
evidence. This can foster efficient enforcement at scale and thereby
improve security and privacy for users of the web.
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Figure 5: Crawler’s form classification procedure.
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A CRAWLER
A.1 Bot-evasion techniques
We implemented the following methods to further decrease the
chance of our crawling being detected as a bot activity.

Browser. We use Undetected Chromedriver,6 which extends the
usual Chromedriver with numerous bot evasion techniques, such
as removing fingerprints unique to Selenium. Unfortunately, there
is no equivalent driver available for Firefox.

Fingerprinting evasion. For each page load, the crawler checks
the load status. This functionality is not directly implemented by
Selenium, so we use Chrome DevTools Protocol for Chrome and
Selenium Wire for Firefox. The use of Selenium Wire is however
prone to TLS fingerprinting. The proxy and browser differ in the
ciphersuite, which is inspected by modern bot detection systems
like Cloudflare. While the Firefox-based crawler is prone to this
detection, the Chrome implementation does not use any proxy.
Additionally we must run Chrome with a non-root user. Chrome
disables sandboxing protections when run as root, making it flagged
as a bot by Cloudflare.

Interaction speeds. Interactions with the website cannot occur
instantaneously, as humans have limited reading andwriting speeds.
Our crawler introduces random time delays before each click and
during typing to mimic human behavior.

IP address. As we study the impact of the EU’s privacy regula-
tions, we focused our data collection on traffic originating from
within the EU. We considered using commercial VPNs, datacenter
or residential proxies, or a university VPN located in the EU. Ac-
cording to a study by Demir et al. [12], residential proxies are the

6https://github.com/ultrafunkamsterdam/undetected-chromedriver

least likely to be detected as bot traffic, closely followed by univer-
sity VPNs, while datacenters and commercial VPNs are blocked
more frequently. Since purchasing a large number of residential IP
addresses from services like Bright Data is expensive (≥$10k for
our crawl), we used a VPN provided by a university in Germany,
which gave us access to a block of 12 IP addresses.

A.2 Supported languages
Our crawler supports 37 languages, with most of the keywords
being translated by native or proficient speakers of the language,
whomwe instructed in observingmultiple registration or newsletter-
subscription websites prior to the translation. These languages
are: Bulgarian, Bosnian, Catalan, Czech, Welsh, Danish, German,
Greek, English, Spanish, Estonian, Basque, Finnish, French,
Galician, Croatian, Hungarian, Icelandic, Italian, Luxembour-
gish, Lithuanian, Latvian, Macedonian, Maltese, Dutch, Norwe-
gian, Polish, Portuguese, Romanian, Russian, Slovak, Slove-
nian, Albanian, Serbian, Swedish, Turkish, and Ukrainian. From
these languages, only 18 of them are supported by LibreTranslate
and therefore are suitable for detection of all the violations. We
highlighted these languages in bold. Note that the LibreTranslate
support is constantly improving, both in the terms of translation
quality and the number of supported languages, which rose to 28
by the camera-ready version of this publication.

We are aware of the following limitation of the machine transla-
tion. First, nuances in the form or email text might be lost. Second,
as the training data is in German and English, the models should re-
flect well the websites in these languages, yet their performance can
drop on websites in a language absent in the training data. Finally,
the ePrivacy Directive implementation is not absolutely consistent
among EU countries, the impact of such inconsistencies remains
a limitation. We believe that the generalization of our methods to
so many languages, even if constrained by the machine translation
quality, is an important contribution of our work in the context of
understudied non-English websites [32, Sec. 4.4.2].

A.3 Form features
For form classification, we use aggregated form features, features
for specific input types that we order to provide stable tabular
features’ ordering, and features extracted from specific parts of
text in the form. The aggregated features include the number of
inputs in total, the number of the <input>, <textarea>, <select>,
and <button> tags. Our crawler distinguishes various form inputs
by their semantics, which we aggregate into the following groups.

• Each of: mail, password, phone, username
• names: first, middle, last or full name
• name-other: organization, title, honorific prefix, other text
fields

• address: street, house number, city, ZIP, country, full address
• Both age and sex
• checkbox: terms of service
• checkbox: privacy policy
• checkbox: privacy policy and terms of service
• checkbox: marketing, privacy policy and terms of service
• checkbox: marketing
• checkbox: SMS

https://github.com/ultrafunkamsterdam/undetected-chromedriver
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• checkbox: age
• checkbox: other
• birthday: day, month, year, full birth, other <select>
• submit buttons: registration, subscribe
• other buttons: login, contact, other

For each of these groups, features correspond to the number of
inputs in the group, whether any of these inputs is required, the
default values, i.e., text for text input or Boolean for checkboxes
and radio buttons, and the text of the closes label. The texts are
then processed by the TD-IDF model, with a vocabulary size of 50.
In the case of checkboxes, the submission button, and the entire
aggregated text of the form, the text is processed by the TF-IDF
model with a 500 words vocabulary and embeddings are extracted
using the universal sentence encoder [7].

A.4 Email confirmation
Since letting the crawler wait for an activation email is computa-
tionally expensive, our crawler only waits for up to 30 seconds. If
an activation email is received after this period, we activate the
registration using a standalone script that processes the incom-
ing emails from all the crawlers running in parallel. However, this
script lacks the registration page session, such as cookies, which
reduces its success rate compared to the stateful crawler within
the 30-second period. We analyzed the distribution of confirmation
emails over time in our crawl and observed that less than half of the
activation emails arrived within this 30-second period. To achieve a
higher success rate for account activation, we recommend waiting
for five minutes in future work, since 97.7% of websites that send
activation emails do so within this period. Further increasing the
waiting period to, say, fifteen minutes would only marginally im-
prove this rate to 99.0%. The longer waiting time, however, comes
at the expense of crawling time.

Unfortunately, due to technical issues the independent confir-
mation script was malfunctioning for about half of the crawl. The
combination of a shorter period of waiting by the crawler and the
faulty script resulted in lower confirmation rates. This caused the
presented results in Section 5 to be more conservative. Namely,
websites that violated the consent in the form but then complied
with the double-opt-in requirement and never sent us a marketing
email are falsely considered compliant.

B MANUAL ANALYSIS OF THE CRAWLER
We conducted a manual investigation of 200 crawled websites to
evaluate form detection. Out of the 200 pages, 19 failed to load, the
analysis presented below pertains to the remaining 181 websites.

In Fig. 6, we present the evaluation of registration form detec-
tion. Among the sampled websites, 55 had a registration form,
of which our crawler successfully detected two-thirds. Additionally,
the crawler identified a wrong form (e.g., a contact form or pass-
word reset form) in 10.5% of the evaluated websites. Furthermore,
in 4.7% of the websites, the crawler misclassified a subscription
form as a registration form.

Fig. 7 illustrates the evaluation of discovered subscription
forms. Our findings reveal that 73.0% of websites do not have a
subscription form (although note that many websites contain
both a subscription form and a registration form). The crawler
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Found subs., none reg. present

Found contact or reset
No reg. found, reg. present

No reg. found, none present

20.3%
(35/172)

4.7%
(8/172)

10.5%
(18/172)

10.5%
(18/172)

54.1%
(93/172)

Figure 6: Evaluation of crawler-detected registration forms.
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Figure 7: Evaluation of crawler-detected subscription forms.

0% 50%

Found correct policy
Found wrong policy

Found policy, none present
No policy found, policy present
No policy found, none present

51.3%
(143/279)

4.3%
(12/279)

3.9%
(11/279)

18.6%
(52/279)

21.9%
(61/279)

Figure 8: Evaluation of found privacy policies.

accurately determined the absence of this form on two-thirds of the
websites, and on 19.6% of the websites, it correctly identified the ex-
isting form. However, the crawler failed to detect the subscription
form on 7.4% of the analyzed websites, and in 6.9% of websites, it
found an incorrect form.

Figs. 8 and 9 illustrate the evaluation of the detected policies
and terms and conditions on a list of 300 websites. Our manual
evaluation showed that almost 75% and 65% of websites contain
privacy policies and terms and conditions, respectively. Our crawler
can then detect the correct privacy policy on 51% of websites and
correctly conclude that there is no policy on 21% of websites. On
19% of websites, it fails to find the policy and in the remaining
9% of cases, it finds a wrong document. The crawler is correct in
finding the terms and detects the absence of terms on 37% and 21%
of websites, respectively. It failed to detect terms on 13% of websites
and in the remaining 29% of cases, it detects a wrong document.
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Figure 9: Evaluation of found terms and conditions.

B.1 Failed registrations
We inspected 100 websites where the crawler detected registration
or newsletter form, but we have not received any email. First, we
noticed that forms of 22 of these websites were successfully sub-
mitted, the websites only do not send any emails. Second, 33 forms
required either telephone or some other information not available
to the crawler (library card number, bank account, etc.), although on
five of these websites, a random input like “Ignore this automated
message” was accepted. Third, other reasons for not being able to
register were wrong form detection, namely our crawler submitted
registration data to eleven comment, eight login, seven contact,
and four other forms. Some of the websites were having a proper
registration of subscription form, so our manual submission
succeeded in 52 cases. On these websites, we observed slightly
higher violation rates of no opt-in, invalid consent, or no consent
given, but these can be explained by conservative interpretation of
our models. However, the email classification seems problematic,
we received a marketing email first only in 9% of cases, while 60%
of websites followed the double-opt-in procedure.

C SUBSEQUENT CRAWL AND EMAIL
ANNOTATION

For a subsequent study, we crawled the May 2023 CrUX list of the
top 100k German websites, resulting in 8230 websites sending us
emails. The initial 10 596 emails were annotated by two researchers,
one of them among the authors. Since the remaining emails were
almost entirely marketing, we marked them as marketing if they
were classified so by the previous model. The dataset contains
110 151 emails, of which are 7% double opt-ins, 5% single opt-ins,
and 88% marketing.

D EMAIL SHARING
In addition to the described methods in Section 5.3.1, we explored
the following methodologies to minimize false positives and nega-
tives in our violation detection for third-party sharing.

TLS certificates. We considered the extraction of company infor-
mation from TLS certificates. However, note that only a minority,
less than 30% of websites, include company names within their TLS
certificates. This practice is predominantly observed among highly
popular websites, whereas our automated crawling and classifica-
tion methods perform the best on websites of medium popularity.
Furthermore, our observations revealed that websites associated
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Figure 10: Confusion matrices of mail type classification.

with the same parent companies commonly employ different com-
pany names in their certificates, calling into question the usefulness
of this approach.

Co-occurrences. We investigated the co-occurrence of senders
who send emails to multiple addresses registered by our crawler.
This analysis uncovered two distinct scenarios. First, email hosting
providers such as Gmail were observed to send emails to multiple
accounts, suggesting that co-occurrence could be indicative of web-
sites that are compliant with privacy regulations. Conversely, we
identified clusters of websites that shared email addresses among
themselves without belonging to the same corporate group and
without obtaining proper user consent, which strongly suggests
privacy violations.

Company databases. We explored the use of databases such as
Whois, Crunchbase, and Orbis to discover connections between
domains owned by the same companies. However, Whois data has
become increasingly sparse due to privacy concerns. Moreover,
both Crunchbase and Orbis feature inconsistent company name
records, leading to false positive violation reports and occasionally
attributing incorrect company names, resulting in false negative
violation reports. We also considered the webXray dataset curated
by Libert [27],7 but it primarily targets third parties within the
tracking industry, which seldom overlap with email senders.

Besides the classification of the 3rd-party sharing in Section 5.3.1,
we also detect whether the third party is a well-known newsletter
sender (e.g., Mailchimp or Sendgrid; we keep a list of almost 100
such newsletter senders). However, we detect these domains rarely,
namely in 27 cases do the senders belong to the undeclared sharing
category. The newsletter companies recommend configuring the
sending domain to the first party (using CNAME). For future work,
we plan to inspect the IP address in the SMTP connection sending
us the email, allowing us to inspect email address processing, since
the newsletter companies are, according to the GDPR, ‘processors’
of personal data, and therefore must also be declared.

Received 6 October 2023; revised 18 February 2024

7https://github.com/agilemobiledev/webXray/blob/master/webxray/resources/
org_domains/org_domains.json

https://github.com/agilemobiledev/webXray/blob/master/webxray/resources/org_domains/org_domains.json
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